Python dataset 模块,DataSet() 实例源码

我们从Python开源项目中,提取了以下16个代码示例,用于说明如何使用dataset.DataSet()

项目:Neural-Architecture-Search-with-RL    作者:dhruvramani    | 项目源码 | 文件源码
def __init__(self, config):
        self.config = config
        self.data = DataSet(self.config)
        self.add_placeholders()
        self.summarizer = tf.summary
        self.net = Network(config)
        self.saver = tf.train.Saver()
        self.epoch_count, self.second_epoch_count = 0, 0
        self.outputs, self.prob = self.net.neural_search()
        self.hyperparams = self.net.gen_hyperparams(self.outputs)
        self.hype_list = [1 for i in range(self.config.hyperparams)] #[7, 7, 24, 5, 5, 36, 3, 3, 48, 64]
        self.reinforce_loss = self.net.REINFORCE(self.prob)
        self.tr_cont_step = self.net.train_controller(self.reinforce_loss, self.val_accuracy)
        self.cNet, self.y_pred = self.init_child(self.hype_list)
        self.cross_loss, self.accuracy, self.tr_model_step = self.grow_child()
        self.init = tf.global_variables_initializer()
        self.local_init = tf.local_variables_initializer()
项目:DeepTrade_keras    作者:happynoom    | 项目源码 | 文件源码
def read_ultimate(path, input_shape):
    ultimate_features = numpy.loadtxt(path + "ultimate_feature." + str(input_shape[0]))
    ultimate_features = numpy.reshape(ultimate_features, [-1, input_shape[0], input_shape[1]])
    ultimate_labels = numpy.loadtxt(path + "ultimate_label." + str(input_shape[0]))
    # ultimate_labels = numpy.reshape(ultimate_labels, [-1, 1])
    train_set = DataSet(ultimate_features, ultimate_labels)
    test_features = numpy.loadtxt(path + "ultimate_feature.test." + str(input_shape[0]))
    test_features = numpy.reshape(test_features, [-1, input_shape[0], input_shape[1]])
    test_labels = numpy.loadtxt(path + "ultimate_label.test." + str(input_shape[0]))
    # test_labels = numpy.reshape(test_labels, [-1, 1])
    test_set = DataSet(test_features, test_labels)
    return train_set, test_set
项目:DeepTrade_keras    作者:happynoom    | 项目源码 | 文件源码
def read_feature(path, input_shape, prefix):
    ultimate_features = numpy.loadtxt("%s/%s_feature.%s" % (path, prefix, str(input_shape[0])))
    ultimate_features = numpy.reshape(ultimate_features, [-1, input_shape[0], input_shape[1]])
    ultimate_labels = numpy.loadtxt("%s/%s_label.%s" % (path, prefix, str(input_shape[0])))
    # ultimate_labels = numpy.reshape(ultimate_labels, [-1, 1])
    train_set = DataSet(ultimate_features, ultimate_labels)
    test_features = numpy.loadtxt("%s/%s_feature.test.%s" % (path, prefix, str(input_shape[0])))
    test_features = numpy.reshape(test_features, [-1, input_shape[0], input_shape[1]])
    test_labels = numpy.loadtxt("%s/%s_label.test.%s" % (path, prefix, str(input_shape[0])))
    # test_labels = numpy.reshape(test_labels, [-1, 1])
    test_set = DataSet(test_features, test_labels)
    return train_set, test_set
项目:AMS    作者:EthanTaylor2    | 项目源码 | 文件源码
def run_train():
    fout = open('inf.txt','w+')

    test_config = ModelConfig()
    test_config.keep_prob = 1.0
    test_config.batch_size = 1

    Session_config = tf.ConfigProto(allow_soft_placement = True)
    Session_config.gpu_options.allow_growth=True 

    with tf.Graph().as_default(), tf.Session(config=Session_config) as sess:    
        with tf.device('/gpu:0'):
        #if True:
            initializer = tf.random_uniform_initializer(-test_config.init_scale, 
                                                        test_config.init_scale)

            train_model = vgg16.Vgg16(FLAGS.vgg16_file_path)
            train_model.build(initializer)

            data_test = dataset.DataSet(FLAGS.file_path_test,FLAGS.data_root_dir,TEST_SIZE,is_train_set=False)

            test_writer = tf.summary.FileWriter(FLAGS.log_dir + '/test')

            saver = tf.train.Saver(max_to_keep=100)
            last_epoch = load_model(sess, saver,FLAGS.saveModelPath,train_model)
            print ('start: ',last_epoch + 1)

            test_accury_1,test_accury_5,test_loss = run_epoch(sess,test_config.keep_prob, fout,test_config.batch_size, train_model, data_test, tf.no_op(),2,test_writer,istraining=False) 
            info = "Final: Test accury(top 1): %.4f Test accury(top 5): %.4f Loss %.4f" % (test_accury_1,test_accury_5,test_loss)
            print (info)
            fout.write(info + '\n')
            fout.flush()



            test_writer.close()

            print("Training step is compeleted!") 
            fout.close()
项目:AMS    作者:EthanTaylor2    | 项目源码 | 文件源码
def run_train():
    fout = open('inf.txt','w+')

    test_config = ModelConfig()
    test_config.keep_prob = 1.0
    test_config.batch_size = 1

    Session_config = tf.ConfigProto(allow_soft_placement = True)
    Session_config.gpu_options.allow_growth=True 



    with tf.Graph().as_default(), tf.Session(config=Session_config) as sess:    
        with tf.device('/gpu:3'):
        #if True:
            initializer = tf.random_uniform_initializer(-test_config.init_scale, 
                                                        test_config.init_scale)

            train_model = vgg16.Vgg16(FLAGS.vgg16_file_path)
            train_model.build(initializer)

            data_test = dataset.DataSet(FLAGS.file_path_test,FLAGS.data_root_dir,TEST_SIZE,is_train_set=False)

            test_writer = tf.summary.FileWriter(FLAGS.log_dir + '/test')

            saver = tf.train.Saver(max_to_keep=100)
            last_epoch = load_model(sess, saver,FLAGS.saveModelPath,train_model)
            print ('start: ',last_epoch + 1)

            test_accury_1,test_accury_5,test_loss = run_epoch(sess,test_config.keep_prob, fout,test_config.batch_size, train_model, data_test, tf.no_op(),2,test_writer,istraining=False) 
            info = "Final: Test accury(top 1): %.3f Test accury(top 5): %.3f Loss %.3f" % (test_accury_1,test_accury_5,test_loss)
            print (info)
            fout.write(info + '\n')
            fout.flush()



            test_writer.close()

            print("Training step is compeleted!") 
            fout.close()
项目:AMS    作者:EthanTaylor2    | 项目源码 | 文件源码
def run_train():
    fout = open('inf.txt','w+')

    test_config = ModelConfig()
    test_config.keep_prob = 1.0
    test_config.batch_size = 1

    Session_config = tf.ConfigProto(allow_soft_placement = True)
    Session_config.gpu_options.allow_growth=True 

    with tf.Graph().as_default(), tf.Session(config=Session_config) as sess:    
        with tf.device('/gpu:0'):
        #if True:
            initializer = tf.random_uniform_initializer(-test_config.init_scale, 
                                                        test_config.init_scale)

            train_model = vgg16.Vgg16(FLAGS.vgg16_file_path)
            train_model.build(initializer)

            data_test = dataset.DataSet(FLAGS.file_path_test,FLAGS.data_root_dir,TEST_SIZE,is_train_set=False)

            test_writer = tf.summary.FileWriter(FLAGS.log_dir + '/test')

            saver = tf.train.Saver(max_to_keep=100)
            last_epoch = load_model(sess, saver,FLAGS.saveModelPath,train_model)
            print ('start: ',last_epoch + 1)

            test_accury_1,test_accury_5,test_loss = run_epoch(sess,test_config.keep_prob, fout,test_config.batch_size, train_model, data_test, tf.no_op(),2,test_writer,istraining=False) 
            info = "Final: Test accury(top 1): %.4f Test accury(top 5): %.4f Loss %.4f" % (test_accury_1,test_accury_5,test_loss)
            print (info)
            fout.write(info + '\n')
            fout.flush()



            test_writer.close()

            print("Training step is compeleted!") 
            fout.close()
项目:AMS    作者:EthanTaylor2    | 项目源码 | 文件源码
def run_train():
    fout = open('inf.txt','w+')

    test_config = ModelConfig()
    test_config.keep_prob = 1.0
    test_config.batch_size = 1

    Session_config = tf.ConfigProto(allow_soft_placement = True)
    Session_config.gpu_options.allow_growth=True 



    with tf.Graph().as_default(), tf.Session(config=Session_config) as sess:    
        with tf.device('/gpu:3'):
        #if True:
            initializer = tf.random_uniform_initializer(-test_config.init_scale, 
                                                        test_config.init_scale)

            train_model = vgg16.Vgg16(FLAGS.vgg16_file_path)
            train_model.build(initializer)

            data_test = dataset.DataSet(FLAGS.file_path_test,FLAGS.data_root_dir,TEST_SIZE,is_train_set=False)

            test_writer = tf.summary.FileWriter(FLAGS.log_dir + '/test')

            saver = tf.train.Saver(max_to_keep=100)
            last_epoch = load_model(sess, saver,FLAGS.saveModelPath,train_model)
            print ('start: ',last_epoch + 1)

            test_accury_1,test_accury_5,test_loss = run_epoch(sess,test_config.keep_prob, fout,test_config.batch_size, train_model, data_test, tf.no_op(),2,test_writer,istraining=False) 
            info = "Final: Test accury(top 1): %.3f Test accury(top 5): %.3f Loss %.3f" % (test_accury_1,test_accury_5,test_loss)
            print (info)
            fout.write(info + '\n')
            fout.flush()



            test_writer.close()

            print("Training step is compeleted!") 
            fout.close()
项目:chainer_frmqn    作者:okdshin    | 项目源码 | 文件源码
def __init__(self, state_shape, action_num, image_num_per_state,
            model,
            gamma=0.99, # discount factor
            replay_batch_size=32,
            replay_memory_size=5*10**4,
            target_model_update_freq=1,
            max_step=50,
            lr=0.00025,
            clipping=False # if True, ignore reward intensity
            ):
        print("initializing DQN...")
        self.action_num = action_num
        self.image_num_per_state = image_num_per_state
        self.gamma = gamma
        self.replay_batch_size = replay_batch_size
        self.replay_memory_size = replay_memory_size
        self.target_model_update_freq = target_model_update_freq
        self.max_step = max_step
        self.clipping = clipping

        print("Initializing Model...")
        self.model = model
        self.model_target = copy.deepcopy(self.model)

        print("Initializing Optimizer")
        self.optimizer = optimizers.RMSpropGraves(lr=lr, alpha=0.95, momentum=0.0, eps=0.01)
        self.optimizer.setup(self.model)
        self.optimizer.add_hook(chainer.optimizer.GradientClipping(20))

        print("Initializing Replay Buffer...")
        self.dataset = dataset.DataSet(
                max_size=replay_memory_size, max_step=max_step, frame_shape=state_shape, frame_dtype=np.uint8)

        self.xp = model.xp
        self.state_shape = state_shape
项目:VisionTest    作者:SamCB    | 项目源码 | 文件源码
def load_data(directory, data_processor_module):
    file_list = os.listdir(directory)
    data_set = DataSet(data_processor_module)

    for i, f in enumerate(file_list):
        full_filename = os.path.join(directory, f)
        img = cv2.imread(full_filename)
        if img is None:
            print("WARNING: File: '{}' could not be loaded".format(full_filename))
            continue
        # The files will be of the type:
        # CLASS-source-frame-itemnumber.jpg
        label = f.split("-")[0].lower()
        if label == "nao_part" or label == "nothing" and random.random() > 0.2:
            # Because we have too many nao_parts, remove a lot of them
            continue
        # if label != "nao_part":
        data_set.add_image(img, label)

        if i % 100:
            print("{}/{} - {:5.2f}%".format(i, len(file_list), i*100./len(file_list)), end="\r")

    print("                        ", end="\r")

    if not data_set.loaded_images:
        raise ValueError("Could not load any images.")

    data_set.process()

    return data_set
项目:AMS    作者:EthanTaylor2    | 项目源码 | 文件源码
def run_train():
    fout = open('inf.txt','w+')

    test_config = ModelConfig()
    test_config.keep_prob = 1.0
    test_config.batch_size = 1

    Session_config = tf.ConfigProto(allow_soft_placement = True)
    Session_config.gpu_options.allow_growth=True 



    with tf.Graph().as_default(), tf.Session(config=Session_config) as sess:    
        with tf.device('/gpu:3'):
        #if True:
            initializer = tf.random_uniform_initializer(-test_config.init_scale, 
                                                        test_config.init_scale)

            train_model = vgg16.Vgg16(FLAGS.vgg16_file_path)
            train_model.build(initializer)

            data_test = dataset.DataSet(FLAGS.file_path_test,FLAGS.data_root_dir,TEST_SIZE,is_train_set=False)

            test_writer = tf.summary.FileWriter(FLAGS.log_dir + '/test')

            saver = tf.train.Saver(max_to_keep=100)
            last_epoch = load_model(sess, saver,FLAGS.saveModelPath,train_model)
            print ('start: ',last_epoch + 1)




            test_accury_1,test_accury_5,test_loss = run_epoch(sess,test_config.keep_prob, fout,test_config.batch_size, train_model, data_test, tf.no_op(),2,test_writer,istraining=False) 
            info = "Final: Test accury(top 1): %.3f Test accury(top 5): %.3f Loss %.3f" % (test_accury_1,test_accury_5,test_loss)
            print (info)
            fout.write(info + '\n')
            fout.flush()



            test_writer.close()

            print("Training step is compeleted!") 
            fout.close()
项目:AMS    作者:EthanTaylor2    | 项目源码 | 文件源码
def run_train():
    fout = open('inf.txt','w+')

    test_config = ModelConfig()
    test_config.keep_prob = 1.0
    test_config.batch_size = 1

    Session_config = tf.ConfigProto(allow_soft_placement = True)
    Session_config.gpu_options.allow_growth=True 



    with tf.Graph().as_default(), tf.Session(config=Session_config) as sess:    
        with tf.device('/gpu:1'):
        #if True:
            initializer = tf.random_uniform_initializer(-test_config.init_scale, 
                                                        test_config.init_scale)

            train_model = vgg16.Vgg16(FLAGS.vgg16_file_path)
            train_model.build(initializer)

            data_test = dataset.DataSet(FLAGS.file_path_test,FLAGS.data_root_dir,TEST_SIZE,is_train_set=False)

            test_writer = tf.summary.FileWriter(FLAGS.log_dir + '/test')

            saver = tf.train.Saver(max_to_keep=100)
            last_epoch = load_model(sess, saver,FLAGS.saveModelPath,train_model)
            print ('start: ',last_epoch + 1)




            test_accury_1,test_accury_5,test_loss = run_epoch(sess,test_config.keep_prob, fout,test_config.batch_size, train_model, data_test, tf.no_op(),2,test_writer,istraining=False) 
            info = "Final: Test accury(top 1): %.3f Test accury(top 5): %.3f Loss %.3f" % (test_accury_1,test_accury_5,test_loss)
            print (info)
            fout.write(info + '\n')
            fout.flush()



            test_writer.close()

            print("Training step is compeleted!") 
            fout.close()
项目:AMS    作者:EthanTaylor2    | 项目源码 | 文件源码
def run_train():
    fout = open('inf.txt','w+')

    test_config = ModelConfig()
    test_config.keep_prob = 1.0
    test_config.batch_size = 1

    Session_config = tf.ConfigProto(allow_soft_placement = True)
    Session_config.gpu_options.allow_growth=True 



    with tf.Graph().as_default(), tf.Session(config=Session_config) as sess:    
        with tf.device('/gpu:0'):
        #if True:
            initializer = tf.random_uniform_initializer(-test_config.init_scale, 
                                                        test_config.init_scale)

            train_model = vgg16.Vgg16(FLAGS.vgg16_file_path)
            train_model.build(initializer)

            data_test = dataset.DataSet(FLAGS.file_path_test,FLAGS.data_root_dir,TEST_SIZE,is_train_set=False)

            test_writer = tf.summary.FileWriter(FLAGS.log_dir + '/test')

            saver = tf.train.Saver(max_to_keep=100)
            last_epoch = load_model(sess, saver,FLAGS.saveModelPath,train_model)
            print ('start: ',last_epoch + 1)




            test_accury_1,test_accury_5,test_loss = run_epoch(sess,test_config.keep_prob, fout,test_config.batch_size, train_model, data_test, tf.no_op(),2,test_writer,istraining=False) 
            info = "Final: Test accury(top 1): %.3f Test accury(top 5): %.3f Loss %.3f" % (test_accury_1,test_accury_5,test_loss)
            print (info)
            fout.write(info + '\n')
            fout.flush()



            test_writer.close()

            print("Training step is compeleted!") 
            fout.close()
项目:AMS    作者:EthanTaylor2    | 项目源码 | 文件源码
def run_train():
    fout = open('inf.txt','w+')

    test_config = ModelConfig()
    test_config.keep_prob = 1.0
    test_config.batch_size = 1

    Session_config = tf.ConfigProto(allow_soft_placement = True)
    Session_config.gpu_options.allow_growth=True 



    with tf.Graph().as_default(), tf.Session(config=Session_config) as sess:    
        with tf.device('/gpu:3'):
        #if True:
            initializer = tf.random_uniform_initializer(-test_config.init_scale, 
                                                        test_config.init_scale)

            train_model = vgg16.Vgg16(FLAGS.vgg16_file_path)
            train_model.build(initializer)

            data_test = dataset.DataSet(FLAGS.file_path_test,FLAGS.data_root_dir,TEST_SIZE,is_train_set=False)

            test_writer = tf.summary.FileWriter(FLAGS.log_dir + '/test')

            saver = tf.train.Saver(max_to_keep=100)
            last_epoch = load_model(sess, saver,FLAGS.saveModelPath,train_model)
            print ('start: ',last_epoch + 1)




            test_accury_1,test_accury_5,test_loss = run_epoch(sess,test_config.keep_prob, fout,test_config.batch_size, train_model, data_test, tf.no_op(),2,test_writer,istraining=False) 
            info = "Final: Test accury(top 1): %.3f Test accury(top 5): %.3f Loss %.3f" % (test_accury_1,test_accury_5,test_loss)
            print (info)
            fout.write(info + '\n')
            fout.flush()



            test_writer.close()

            print("Training step is compeleted!") 
            fout.close()
项目:AMS    作者:EthanTaylor2    | 项目源码 | 文件源码
def run_train():
    fout = open('inf.txt','w+')

    test_config = ModelConfig()
    test_config.keep_prob = 1.0
    test_config.batch_size = 1

    Session_config = tf.ConfigProto(allow_soft_placement = True)
    Session_config.gpu_options.allow_growth=True 



    with tf.Graph().as_default(), tf.Session(config=Session_config) as sess:    
        with tf.device('/gpu:2'):
        #if True:
            initializer = tf.random_uniform_initializer(-test_config.init_scale, 
                                                        test_config.init_scale)

            train_model = vgg16.Vgg16(FLAGS.vgg16_file_path)
            train_model.build(initializer)

            data_test = dataset.DataSet(FLAGS.file_path_test,FLAGS.data_root_dir,TEST_SIZE,is_train_set=False)

            test_writer = tf.summary.FileWriter(FLAGS.log_dir + '/test')

            saver = tf.train.Saver(max_to_keep=100)
            last_epoch = load_model(sess, saver,FLAGS.saveModelPath,train_model)
            print ('start: ',last_epoch + 1)




            test_accury_1,test_accury_5,test_loss = run_epoch(sess,test_config.keep_prob, fout,test_config.batch_size, train_model, data_test, tf.no_op(),2,test_writer,istraining=False) 
            info = "Final: Test accury(top 1): %.3f Test accury(top 5): %.3f Loss %.3f" % (test_accury_1,test_accury_5,test_loss)
            print (info)
            fout.write(info + '\n')
            fout.flush()



            test_writer.close()

            print("Training step is compeleted!") 
            fout.close()
项目:AMS    作者:EthanTaylor2    | 项目源码 | 文件源码
def run_train():
    fout = open('inf.txt','w+')

    test_config = ModelConfig()
    test_config.keep_prob = 1.0
    test_config.batch_size = 1

    Session_config = tf.ConfigProto(allow_soft_placement = True)
    Session_config.gpu_options.allow_growth=True 



    with tf.Graph().as_default(), tf.Session(config=Session_config) as sess:    
        with tf.device('/gpu:0'):
        #if True:
            initializer = tf.random_uniform_initializer(-test_config.init_scale, 
                                                        test_config.init_scale)

            train_model = vgg16.Vgg16(FLAGS.vgg16_file_path)
            train_model.build(initializer)

            data_test = dataset.DataSet(FLAGS.file_path_test,FLAGS.data_root_dir,TEST_SIZE,is_train_set=False)

            test_writer = tf.summary.FileWriter(FLAGS.log_dir + '/test')

            saver = tf.train.Saver(max_to_keep=100)
            last_epoch = load_model(sess, saver,FLAGS.saveModelPath,train_model)
            print ('start: ',last_epoch + 1)




            test_accury_1,test_accury_5,test_loss = run_epoch(sess,test_config.keep_prob, fout,test_config.batch_size, train_model, data_test, tf.no_op(),2,test_writer,istraining=False) 
            info = "Final: Test accury(top 1): %.3f Test accury(top 5): %.3f Loss %.3f" % (test_accury_1,test_accury_5,test_loss)
            print (info)
            fout.write(info + '\n')
            fout.flush()



            test_writer.close()

            print("Training step is compeleted!") 
            fout.close()
项目:AutoGP    作者:ebonilla    | 项目源码 | 文件源码
def import_mnist(validation_size=0):
    """
    This import mnist and saves the data as an object of our DataSet class
    :param concat_val: Concatenate training and validation
    :return:
    """
    SOURCE_URL = 'http://yann.lecun.com/exdb/mnist/'
    TRAIN_IMAGES = 'train-images-idx3-ubyte.gz'
    TRAIN_LABELS = 'train-labels-idx1-ubyte.gz'
    TEST_IMAGES = 't10k-images-idx3-ubyte.gz'
    TEST_LABELS = 't10k-labels-idx1-ubyte.gz'
    ONE_HOT = True
    TRAIN_DIR = 'experiments/data/MNIST_data'

    local_file = base.maybe_download(TRAIN_IMAGES, TRAIN_DIR,
                                     SOURCE_URL + TRAIN_IMAGES)
    with open(local_file) as f:
        train_images = extract_images(f)

    local_file = base.maybe_download(TRAIN_LABELS, TRAIN_DIR,
                                     SOURCE_URL + TRAIN_LABELS)
    with open(local_file) as f:
        train_labels = extract_labels(f, one_hot=ONE_HOT)

    local_file = base.maybe_download(TEST_IMAGES, TRAIN_DIR,
                                     SOURCE_URL + TEST_IMAGES)
    with open(local_file) as f:
        test_images = extract_images(f)

    local_file = base.maybe_download(TEST_LABELS, TRAIN_DIR,
                                     SOURCE_URL + TEST_LABELS)
    with open(local_file) as f:
        test_labels = extract_labels(f, one_hot=ONE_HOT)

    validation_images = train_images[:validation_size]
    validation_labels = train_labels[:validation_size]
    train_images = train_images[validation_size:]
    train_labels = train_labels[validation_size:]

    # process images
    train_images = process_mnist(train_images)
    validation_images = process_mnist(validation_images)
    test_images = process_mnist(test_images)

    # standardize data
    train_mean, train_std = get_data_info(train_images)
    train_images = standardize_data(train_images, train_mean, train_std)
    validation_images = standardize_data(validation_images, train_mean, train_std)
    test_images = standardize_data(test_images, train_mean, train_std)

    data = DataSet(train_images, train_labels)
    test = DataSet(test_images, test_labels)
    val = DataSet(validation_images, validation_labels)

    return data, test, val