我们从Python开源项目中,提取了以下1个代码示例,用于说明如何使用datasets.imagenet()。
def _load_imagenet_annotation(self, index): """ Load image and bounding boxes info from txt files of imagenet. """ filename = os.path.join(self._data_path, 'Annotations', self._image_set, index + '.xml') # print 'Loading: {}'.format(filename) def get_data_from_tag(node, tag): return node.getElementsByTagName(tag)[0].childNodes[0].data with open(filename) as f: data = minidom.parseString(f.read()) objs = data.getElementsByTagName('object') num_objs = len(objs) boxes = np.zeros((num_objs, 4), dtype=np.uint16) gt_classes = np.zeros((num_objs), dtype=np.int32) overlaps = np.zeros((num_objs, self.num_classes), dtype=np.float32) # Load object bounding boxes into a data frame. for ix, obj in enumerate(objs): x1 = float(get_data_from_tag(obj, 'xmin')) y1 = float(get_data_from_tag(obj, 'ymin')) x2 = float(get_data_from_tag(obj, 'xmax')) y2 = float(get_data_from_tag(obj, 'ymax')) cls = self._wnid_to_ind[ str(get_data_from_tag(obj, "name")).lower().strip()] boxes[ix, :] = [x1, y1, x2, y2] gt_classes[ix] = cls overlaps[ix, cls] = 1.0 overlaps = scipy.sparse.csr_matrix(overlaps) return {'boxes' : boxes, 'gt_classes': gt_classes, 'gt_overlaps' : overlaps, 'flipped' : False}