Python keras.activations 模块,relu() 实例源码

我们从Python开源项目中,提取了以下12个代码示例,用于说明如何使用keras.activations.relu()

项目:keras-wavenet    作者:usernaamee    | 项目源码 | 文件源码
def wavenetBlock(n_atrous_filters, atrous_filter_size, atrous_rate,
                 n_conv_filters, conv_filter_size):
    def f(input_):
        residual = input_
        tanh_out = AtrousConvolution1D(n_atrous_filters, atrous_filter_size,
                                       atrous_rate=atrous_rate,
                                       border_mode='same',
                                       activation='tanh')(input_)
        sigmoid_out = AtrousConvolution1D(n_atrous_filters, atrous_filter_size,
                                          atrous_rate=atrous_rate,
                                          border_mode='same',
                                          activation='sigmoid')(input_)
        merged = merge([tanh_out, sigmoid_out], mode='mul')
        skip_out = Convolution1D(1, 1, activation='relu', border_mode='same')(merged)
        out = merge([skip_out, residual], mode='sum')
        return out, skip_out
    return f
项目:keras-wavenet    作者:usernaamee    | 项目源码 | 文件源码
def get_basic_generative_model(input_size):
    input = Input(shape=(1, input_size, 1))
    l1a, l1b = wavenetBlock(10, 5, 2, 1, 3)(input)
    l2a, l2b = wavenetBlock(1, 2, 4, 1, 3)(l1a)
    l3a, l3b = wavenetBlock(1, 2, 8, 1, 3)(l2a)
    l4a, l4b = wavenetBlock(1, 2, 16, 1, 3)(l3a)
    l5a, l5b = wavenetBlock(1, 2, 32, 1, 3)(l4a)
    l6 = merge([l1b, l2b, l3b, l4b, l5b], mode='sum')
    l7 = Lambda(relu)(l6)
    l8 = Convolution2D(1, 1, 1, activation='relu')(l7)
    l9 = Convolution2D(1, 1, 1)(l8)
    l10 = Flatten()(l9)
    l11 = Dense(1, activation='tanh')(l10)
    model = Model(input=input, output=l11)
    model.compile(loss='mse', optimizer='rmsprop', metrics=['accuracy'])
    model.summary()
    return model
项目:keras-recommendation    作者:sonyisme    | 项目源码 | 文件源码
def test_relu():
    '''
    Relu implementation doesn't depend on the value being
    a theano variable. Testing ints, floats and theano tensors.
    '''

    from keras.activations import relu as r

    assert r(5) == 5
    assert r(-5) == 0
    assert r(-0.1) == 0
    assert r(0.1) == 0.1

    x = T.vector()
    exp = r(x)
    f = theano.function([x], exp)

    test_values = get_standard_values()
    result = f(test_values)

    list_assert_equal(result, test_values) # because no negatives in test values
项目:deep-coref    作者:clarkkev    | 项目源码 | 文件源码
def test_relu():
    '''
    Relu implementation doesn't depend on the value being
    a theano variable. Testing ints, floats and theano tensors.
    '''

    from keras.activations import relu as r

    assert r(5) == 5
    assert r(-5) == 0
    assert r(-0.1) == 0
    assert r(0.1) == 0.1

    x = T.vector()
    exp = r(x)
    f = theano.function([x], exp)

    test_values = get_standard_values()
    result = f(test_values)

    list_assert_equal(result, test_values)  # because no negatives in test values
项目:RecommendationSystem    作者:TURuibo    | 项目源码 | 文件源码
def test_relu():
    '''
    Relu implementation doesn't depend on the value being
    a theano variable. Testing ints, floats and theano tensors.
    '''

    from keras.activations import relu as r

    assert r(5) == 5
    assert r(-5) == 0
    assert r(-0.1) == 0
    assert r(0.1) == 0.1

    x = T.vector()
    exp = r(x)
    f = theano.function([x], exp)

    test_values = get_standard_values()
    result = f(test_values)

    list_assert_equal(result, test_values) # because no negatives in test values
项目:keras    作者:GeekLiB    | 项目源码 | 文件源码
def test_relu():
    '''
    Relu implementation doesn't depend on the value being
    a theano variable. Testing ints, floats and theano tensors.
    '''
    x = K.placeholder(ndim=2)
    f = K.function([x], [activations.relu(x)])

    test_values = get_standard_values()
    result = f([test_values])[0]

    # because no negatives in test values
    assert_allclose(result, test_values, rtol=1e-05)
项目:keras-customized    作者:ambrite    | 项目源码 | 文件源码
def test_relu():
    '''
    Relu implementation doesn't depend on the value being
    a theano variable. Testing ints, floats and theano tensors.
    '''
    x = K.placeholder(ndim=2)
    f = K.function([x], [activations.relu(x)])

    test_values = get_standard_values()
    result = f([test_values])[0]

    # because no negatives in test values
    assert_allclose(result, test_values, rtol=1e-05)
项目:TemporalConvolutionalNetworks    作者:colincsl    | 项目源码 | 文件源码
def temporal_convs_linear(n_nodes, conv_len, n_classes, n_feat, max_len, 
                        causal=False, loss='categorical_crossentropy', 
                        optimizer='adam', return_param_str=False):
    """ Used in paper: 
    Segmental Spatiotemporal CNNs for Fine-grained Action Segmentation
    Lea et al. ECCV 2016

    Note: Spatial dropout was not used in the original paper. 
    It tends to improve performance a little.  
    """

    inputs = Input(shape=(max_len,n_feat))
    if causal: model = ZeroPadding1D((conv_len//2,0))(model)
    model = Convolution1D(n_nodes, conv_len, input_dim=n_feat, input_length=max_len, border_mode='same', activation='relu')(inputs)
    if causal: model = Cropping1D((0,conv_len//2))(model)

    model = SpatialDropout1D(0.3)(model)

    model = TimeDistributed(Dense(n_classes, activation="softmax" ))(model)

    model = Model(input=inputs, output=model)
    model.compile(loss=loss, optimizer=optimizer, sample_weight_mode="temporal")

    if return_param_str:
        param_str = "tConv_C{}".format(conv_len)
        if causal:
            param_str += "_causal"

        return model, param_str
    else:
        return model
项目:keras    作者:NVIDIA    | 项目源码 | 文件源码
def test_relu():
    '''
    Relu implementation doesn't depend on the value being
    a theano variable. Testing ints, floats and theano tensors.
    '''
    x = K.placeholder(ndim=2)
    f = K.function([x], [activations.relu(x)])

    test_values = get_standard_values()
    result = f([test_values])[0]

    # because no negatives in test values
    assert_allclose(result, test_values, rtol=1e-05)
项目:TemporalConvolutionalNetworks    作者:colincsl    | 项目源码 | 文件源码
def ED_TCN(n_nodes, conv_len, n_classes, n_feat, max_len, 
            loss='categorical_crossentropy', causal=False, 
            optimizer="rmsprop", activation='norm_relu',
            return_param_str=False):
    n_layers = len(n_nodes)

    inputs = Input(shape=(max_len,n_feat))
    model = inputs

    # ---- Encoder ----
    for i in range(n_layers):
        # Pad beginning of sequence to prevent usage of future data
        if causal: model = ZeroPadding1D((conv_len//2,0))(model)
        model = Convolution1D(n_nodes[i], conv_len, border_mode='same')(model)
        if causal: model = Cropping1D((0,conv_len//2))(model)

        model = SpatialDropout1D(0.3)(model)

        if activation=='norm_relu': 
            model = Activation('relu')(model)            
            model = Lambda(channel_normalization, name="encoder_norm_{}".format(i))(model)
        elif activation=='wavenet': 
            model = WaveNet_activation(model) 
        else:
            model = Activation(activation)(model)            

        model = MaxPooling1D(2)(model)

    # ---- Decoder ----
    for i in range(n_layers):
        model = UpSampling1D(2)(model)
        if causal: model = ZeroPadding1D((conv_len//2,0))(model)
        model = Convolution1D(n_nodes[-i-1], conv_len, border_mode='same')(model)
        if causal: model = Cropping1D((0,conv_len//2))(model)

        model = SpatialDropout1D(0.3)(model)

        if activation=='norm_relu': 
            model = Activation('relu')(model)
            model = Lambda(channel_normalization, name="decoder_norm_{}".format(i))(model)
        elif activation=='wavenet': 
            model = WaveNet_activation(model) 
        else:
            model = Activation(activation)(model)

    # Output FC layer
    model = TimeDistributed(Dense(n_classes, activation="softmax" ))(model)

    model = Model(input=inputs, output=model)
    model.compile(loss=loss, optimizer=optimizer, sample_weight_mode="temporal", metrics=['accuracy'])

    if return_param_str:
        param_str = "ED-TCN_C{}_L{}".format(conv_len, n_layers)
        if causal:
            param_str += "_causal"

        return model, param_str
    else:
        return model
项目:TemporalConvolutionalNetworks    作者:colincsl    | 项目源码 | 文件源码
def ED_TCN_atrous(n_nodes, conv_len, n_classes, n_feat, max_len, 
                loss='categorical_crossentropy', causal=False, 
                optimizer="rmsprop", activation='norm_relu',
                return_param_str=False):
    n_layers = len(n_nodes)

    inputs = Input(shape=(None,n_feat))
    model = inputs

    # ---- Encoder ----
    for i in range(n_layers):
        # Pad beginning of sequence to prevent usage of future data
        if causal: model = ZeroPadding1D((conv_len//2,0))(model)
        model = AtrousConvolution1D(n_nodes[i], conv_len, atrous_rate=i+1, border_mode='same')(model)
        if causal: model = Cropping1D((0,conv_len//2))(model)

        model = SpatialDropout1D(0.3)(model)

        if activation=='norm_relu': 
            model = Activation('relu')(model)            
            model = Lambda(channel_normalization, name="encoder_norm_{}".format(i))(model)
        elif activation=='wavenet': 
            model = WaveNet_activation(model) 
        else:
            model = Activation(activation)(model)            

    # ---- Decoder ----
    for i in range(n_layers):
        if causal: model = ZeroPadding1D((conv_len//2,0))(model)
        model = AtrousConvolution1D(n_nodes[-i-1], conv_len, atrous_rate=n_layers-i, border_mode='same')(model)      
        if causal: model = Cropping1D((0,conv_len//2))(model)

        model = SpatialDropout1D(0.3)(model)

        if activation=='norm_relu': 
            model = Activation('relu')(model)
            model = Lambda(channel_normalization, name="decoder_norm_{}".format(i))(model)
        elif activation=='wavenet': 
            model = WaveNet_activation(model) 
        else:
            model = Activation(activation)(model)

    # Output FC layer
    model = TimeDistributed(Dense(n_classes, activation="softmax" ))(model)

    model = Model(input=inputs, output=model)

    model.compile(loss=loss, optimizer=optimizer, sample_weight_mode="temporal", metrics=['accuracy'])

    if return_param_str:
        param_str = "ED-TCNa_C{}_L{}".format(conv_len, n_layers)
        if causal:
            param_str += "_causal"

        return model, param_str
    else:
        return model
项目:TemporalConvolutionalNetworks    作者:colincsl    | 项目源码 | 文件源码
def TimeDelayNeuralNetwork(n_nodes, conv_len, n_classes, n_feat, max_len, 
                loss='categorical_crossentropy', causal=False, 
                optimizer="rmsprop", activation='sigmoid',
                return_param_str=False):
    # Time-delay neural network
    n_layers = len(n_nodes)

    inputs = Input(shape=(max_len,n_feat))
    model = inputs
    inputs_mask = Input(shape=(max_len,1))
    model_masks = [inputs_mask]

    # ---- Encoder ----
    for i in range(n_layers):
        # Pad beginning of sequence to prevent usage of future data
        if causal: model = ZeroPadding1D((conv_len//2,0))(model)
        model = AtrousConvolution1D(n_nodes[i], conv_len, atrous_rate=i+1, border_mode='same')(model)
        # model = SpatialDropout1D(0.3)(model)
        if causal: model = Cropping1D((0,conv_len//2))(model)

        if activation=='norm_relu': 
            model = Activation('relu')(model)            
            model = Lambda(channel_normalization, name="encoder_norm_{}".format(i))(model)
        elif activation=='wavenet': 
            model = WaveNet_activation(model) 
        else:
            model = Activation(activation)(model)            

    # Output FC layer
    model = TimeDistributed(Dense(n_classes, activation="softmax"))(model)

    model = Model(input=inputs, output=model)
    model.compile(loss=loss, optimizer=optimizer, sample_weight_mode="temporal", metrics=['accuracy'])

    if return_param_str:
        param_str = "TDN_C{}".format(conv_len)
        if causal:
            param_str += "_causal"

        return model, param_str
    else:
        return model