【C++提高编程】C++全栈体系(十六)

1年前未命名174
【C++提高编程】C++全栈体系(十六) 柠檬小帽 于2023-02-06 16:33:07发布 1021 收藏 5 分类专栏: C++全栈体系 文章标签: c++ 算法 java C++全栈体系 专栏收录该内容 17 篇文章 2 订阅 订阅专栏 C++提高编程 第一章 模板 一、模板的概念

模板就是建立通用的模具,大大提高复用性

例如生活中的模板

一寸照片模板: PPT模板: 模板的特点:

模板不可以直接使用,它只是一个框架模板的通用并不是万能的 二、函数模板

C++另一种编程思想称为 泛型编程 ,主要利用的技术就是模板

C++提供两种模板机制:函数模板和类模板

1. 函数模板语法

函数模板作用:

建立一个通用函数,其函数返回值类型和形参类型可以不具体制定,用一个虚拟的类型来代表。

语法:

template<typename T> 函数声明或定义

解释:

template — 声明创建模板

typename — 表面其后面的符号是一种数据类型,可以用class代替

T — 通用的数据类型,名称可以替换,通常为大写字母

示例:

//交换整型函数 void swapInt(int& a, int& b) { int temp = a; a = b; b = temp; } //交换浮点型函数 void swapDouble(double& a, double& b) { double temp = a; a = b; b = temp; } //利用模板提供通用的交换函数 template<typename T> void mySwap(T& a, T& b) { T temp = a; a = b; b = temp; } void test01() { int a = 10; int b = 20; //swapInt(a, b); //利用模板实现交换 //1、自动类型推导 mySwap(a, b); //2、显示指定类型 mySwap<int>(a, b); cout << "a = " << a << endl; cout << "b = " << b << endl; } int main() { test01(); system("pause"); return 0; } /* a = 10 b = 20 */

总结:

函数模板利用关键字 template使用函数模板有两种方式:自动类型推导、显示指定类型模板的目的是为了提高复用性,将类型参数化 2. 函数模板注意事项

注意事项:

自动类型推导,必须推导出一致的数据类型T,才可以使用

模板必须要确定出T的数据类型,才可以使用

示例:

//利用模板提供通用的交换函数 template<class T> void mySwap(T& a, T& b) { T temp = a; a = b; b = temp; } // 1、自动类型推导,必须推导出一致的数据类型T,才可以使用 void test01() { int a = 10; int b = 20; char c = 'c'; mySwap(a, b); // 正确,可以推导出一致的T //mySwap(a, c); // 错误,推导不出一致的T类型 } // 2、模板必须要确定出T的数据类型,才可以使用 template<class T> void func() { cout << "func 调用" << endl; } void test02() { //func(); //错误,模板不能独立使用,必须确定出T的类型 func<int>(); //利用显示指定类型的方式,给T一个类型,才可以使用该模板 } int main() { test01(); test02(); system("pause"); return 0; }

总结:

使用模板时必须确定出通用数据类型T,并且能够推导出一致的类型 3. 函数模板案例

案例描述:

利用函数模板封装一个排序的函数,可以对不同数据类型数组进行排序排序规则从大到小,排序算法为选择排序分别利用char数组和int数组进行测试

示例:

//交换的函数模板 template<typename T> void mySwap(T &a, T&b) { T temp = a; a = b; b = temp; } template<class T> // 也可以替换成typename //利用选择排序,进行对数组从大到小的排序 void mySort(T arr[], int len) { for (int i = 0; i < len; i++) { int max = i; //最大数的下标 for (int j = i + 1; j < len; j++) { if (arr[max] < arr[j]) { max = j; } } if (max != i) //如果最大数的下标不是i,交换两者 { mySwap(arr[max], arr[i]); } } } template<typename T> void printArray(T arr[], int len) { for (int i = 0; i < len; i++) { cout << arr[i] << " "; } cout << endl; } void test01() { //测试char数组 char charArr[] = "bdcfeagh"; int num = sizeof(charArr) / sizeof(char); mySort(charArr, num); printArray(charArr, num); } void test02() { //测试int数组 int intArr[] = { 7, 5, 8, 1, 3, 9, 2, 4, 6 }; int num = sizeof(intArr) / sizeof(int); mySort(intArr, num); printArray(intArr, num); } int main() { test01(); test02(); system("pause"); return 0; } /* h g f e d c b a 9 8 7 6 5 4 3 2 1 */

总结:模板可以提高代码复用,需要熟练掌握

4. 普通函数与函数模板的区别

普通函数与函数模板区别:

普通函数调用时可以发生自动类型转换(隐式类型转换)函数模板调用时,如果利用自动类型推导,不会发生隐式类型转换如果利用显示指定类型的方式,可以发生隐式类型转换

示例:

//普通函数 int myAdd01(int a, int b) { return a + b; } //函数模板 template<class T> T myAdd02(T a, T b) { return a + b; } //使用函数模板时,如果用自动类型推导,不会发生自动类型转换,即隐式类型转换 void test01() { int a = 10; int b = 20; char c = 'c'; cout << myAdd01(a, c) << endl; //正确,将char类型的'c'隐式转换为int类型 'c' 对应 ASCII码 99 //myAdd02(a, c); // 报错,使用自动类型推导时,不会发生隐式类型转换 myAdd02<int>(a, c); //正确,如果用显示指定类型,可以发生隐式类型转换 } int main() { test01(); system("pause"); return 0; } /* 109 */

总结:建议使用显示指定类型的方式,调用函数模板,因为可以自己确定通用类型T

5. 普通函数与函数模板的调用规则

调用规则如下:

如果函数模板和普通函数都可以实现,优先调用普通函数可以通过空模板参数列表来强制调用函数模板函数模板也可以发生重载如果函数模板可以产生更好的匹配,优先调用函数模板

示例:

//普通函数与函数模板调用规则 void myPrint(int a, int b) { cout << "调用的普通函数" << endl; } template<typename T> void myPrint(T a, T b) { cout << "调用的模板" << endl; } template<typename T> void myPrint(T a, T b, T c) { cout << "调用重载的模板" << endl; } void test01() { //1、如果函数模板和普通函数都可以实现,优先调用普通函数 // 注意 如果告诉编译器 普通函数是有的,但只是声明没有实现,或者不在当前文件内实现,就会报错找不到 int a = 10; int b = 20; myPrint(a, b); //调用普通函数 //2、可以通过空模板参数列表来强制调用函数模板 myPrint<>(a, b); //调用函数模板 //3、函数模板也可以发生重载 int c = 30; myPrint(a, b, c); //调用重载的函数模板 //4、 如果函数模板可以产生更好的匹配,优先调用函数模板 char c1 = 'a'; char c2 = 'b'; myPrint(c1, c2); //调用函数模板 } int main() { test01(); system("pause"); return 0; } /* 调用的普通函数 调用的模板 调用重载的模板 调用的模板 */

总结:既然提供了函数模板,最好就不要提供普通函数,否则容易出现二义性

6. 模板的局限性

局限性:

模板的通用性并不是万能的

例如:

template<class T> void f(T a, T b) { a = b; }

在上述代码中提供的赋值操作,如果传入的a和b是一个数组,就无法实现了

再例如:

template<class T> void f(T a, T b) { if(a > b) { ... } }

在上述代码中,如果T的数据类型传入的是像Person这样的自定义数据类型,也无法正常运行

因此C++为了解决这种问题,提供模板的重载,可以为这些特定的类型提供具体化的模板

示例:

#include<iostream> using namespace std; #include <string> class Person { public: Person(string name, int age) { this->m_Name = name; this->m_Age = age; } string m_Name; int m_Age; }; //普通函数模板 template<class T> bool myCompare(T& a, T& b) { if (a == b) { return true; } else { return false; } } //具体化,显示具体化的原型和定意思以template<>开头,并通过名称来指出类型 //具体化优先于常规模板 template<> bool myCompare(Person &p1, Person &p2) { if ( p1.m_Name == p2.m_Name && p1.m_Age == p2.m_Age) { return true; } else { return false; } } void test01() { int a = 10; int b = 20; //内置数据类型可以直接使用通用的函数模板 bool ret = myCompare(a, b); if (ret) { cout << "a == b " << endl; } else { cout << "a != b " << endl; } } void test02() { Person p1("Tom", 10); Person p2("Tom", 10); //自定义数据类型,不会调用普通的函数模板 //可以创建具体化的Person数据类型的模板,用于特殊处理这个类型 bool ret = myCompare(p1, p2); if (ret) { cout << "p1 == p2 " << endl; } else { cout << "p1 != p2 " << endl; } } int main() { test01(); test02(); system("pause"); return 0; } /* a != b p1 == p2 */

总结:

利用具体化的模板,可以解决自定义类型的通用化学习模板并不是为了写模板,而是在STL能够运用系统提供的模板
标签: [db:标签TAG]

相关文章

Python雪花代码

Python雪花代码...

深度学习做不了什么事

深度学习做不了什么事...

nginx的高可用---Keepalived

nginx的高可用---Keepalived...

Kotlin学习:5.2、异步数据流 Flow

Kotlin学习:5.2、异步数据流 Flow...

神经网络优化鲸鱼算法

神经网络优化鲸鱼算法...

ChatGPT?听说Biying把它下架了

ChatGPT?听说Biying把它下架了...