Python Crypto.Util.number 模块,GCD 实例源码

我们从Python开源项目中,提取了以下34个代码示例,用于说明如何使用Crypto.Util.number.GCD

项目:hostapd-mana    作者:adde88    | 项目源码 | 文件源码
def test_getStrongPrime(self):
        """Util.number.getStrongPrime"""
        self.assertRaises(ValueError, number.getStrongPrime, 256)
        self.assertRaises(ValueError, number.getStrongPrime, 513)
        bits = 512
        x = number.getStrongPrime(bits)
        self.assertNotEqual(x % 2, 0)
        self.assertEqual(x > (1L << bits-1)-1, 1)
        self.assertEqual(x < (1L << bits), 1)
        e = 2**16+1
        x = number.getStrongPrime(bits, e)
        self.assertEqual(number.GCD(x-1, e), 1)
        self.assertNotEqual(x % 2, 0)
        self.assertEqual(x > (1L << bits-1)-1, 1)
        self.assertEqual(x < (1L << bits), 1)
        e = 2**16+2
        x = number.getStrongPrime(bits, e)
        self.assertEqual(number.GCD((x-1)>>1, e), 1)
        self.assertNotEqual(x % 2, 0)
        self.assertEqual(x > (1L << bits-1)-1, 1)
        self.assertEqual(x < (1L << bits), 1)
项目:watchmen    作者:lycclsltt    | 项目源码 | 文件源码
def test_getStrongPrime(self):
        """Util.number.getStrongPrime"""
        self.assertRaises(ValueError, number.getStrongPrime, 256)
        self.assertRaises(ValueError, number.getStrongPrime, 513)
        bits = 512
        x = number.getStrongPrime(bits)
        self.assertNotEqual(x % 2, 0)
        self.assertEqual(x > (1L << bits-1)-1, 1)
        self.assertEqual(x < (1L << bits), 1)
        e = 2**16+1
        x = number.getStrongPrime(bits, e)
        self.assertEqual(number.GCD(x-1, e), 1)
        self.assertNotEqual(x % 2, 0)
        self.assertEqual(x > (1L << bits-1)-1, 1)
        self.assertEqual(x < (1L << bits), 1)
        e = 2**16+2
        x = number.getStrongPrime(bits, e)
        self.assertEqual(number.GCD((x-1)>>1, e), 1)
        self.assertNotEqual(x % 2, 0)
        self.assertEqual(x > (1L << bits-1)-1, 1)
        self.assertEqual(x < (1L << bits), 1)
项目:aws-cfn-plex    作者:lordmuffin    | 项目源码 | 文件源码
def test_getStrongPrime(self):
        """Util.number.getStrongPrime"""
        self.assertRaises(ValueError, number.getStrongPrime, 256)
        self.assertRaises(ValueError, number.getStrongPrime, 513)
        bits = 512
        x = number.getStrongPrime(bits)
        self.assertNotEqual(x % 2, 0)
        self.assertEqual(x > (1L << bits-1)-1, 1)
        self.assertEqual(x < (1L << bits), 1)
        e = 2**16+1
        x = number.getStrongPrime(bits, e)
        self.assertEqual(number.GCD(x-1, e), 1)
        self.assertNotEqual(x % 2, 0)
        self.assertEqual(x > (1L << bits-1)-1, 1)
        self.assertEqual(x < (1L << bits), 1)
        e = 2**16+2
        x = number.getStrongPrime(bits, e)
        self.assertEqual(number.GCD((x-1)>>1, e), 1)
        self.assertNotEqual(x % 2, 0)
        self.assertEqual(x > (1L << bits-1)-1, 1)
        self.assertEqual(x < (1L << bits), 1)
项目:git_intgrtn_aws_s3    作者:droidlabour    | 项目源码 | 文件源码
def test_getStrongPrime(self):
        """Util.number.getStrongPrime"""
        self.assertRaises(ValueError, number.getStrongPrime, 256)
        self.assertRaises(ValueError, number.getStrongPrime, 513)
        bits = 512
        x = number.getStrongPrime(bits)
        self.assertNotEqual(x % 2, 0)
        self.assertEqual(x > (1L << bits-1)-1, 1)
        self.assertEqual(x < (1L << bits), 1)
        e = 2**16+1
        x = number.getStrongPrime(bits, e)
        self.assertEqual(number.GCD(x-1, e), 1)
        self.assertNotEqual(x % 2, 0)
        self.assertEqual(x > (1L << bits-1)-1, 1)
        self.assertEqual(x < (1L << bits), 1)
        e = 2**16+2
        x = number.getStrongPrime(bits, e)
        self.assertEqual(number.GCD((x-1)>>1, e), 1)
        self.assertNotEqual(x % 2, 0)
        self.assertEqual(x > (1L << bits-1)-1, 1)
        self.assertEqual(x < (1L << bits), 1)
项目:MCSManager-fsmodule    作者:Suwings    | 项目源码 | 文件源码
def test_getStrongPrime(self):
        """Util.number.getStrongPrime"""
        self.assertRaises(ValueError, number.getStrongPrime, 256)
        self.assertRaises(ValueError, number.getStrongPrime, 513)
        bits = 512
        x = number.getStrongPrime(bits)
        self.assertNotEqual(x % 2, 0)
        self.assertEqual(x > (1L << bits-1)-1, 1)
        self.assertEqual(x < (1L << bits), 1)
        e = 2**16+1
        x = number.getStrongPrime(bits, e)
        self.assertEqual(number.GCD(x-1, e), 1)
        self.assertNotEqual(x % 2, 0)
        self.assertEqual(x > (1L << bits-1)-1, 1)
        self.assertEqual(x < (1L << bits), 1)
        e = 2**16+2
        x = number.getStrongPrime(bits, e)
        self.assertEqual(number.GCD((x-1)>>1, e), 1)
        self.assertNotEqual(x % 2, 0)
        self.assertEqual(x > (1L << bits-1)-1, 1)
        self.assertEqual(x < (1L << bits), 1)
项目:PyMal    作者:cysinfo    | 项目源码 | 文件源码
def test_getStrongPrime(self):
        """Util.number.getStrongPrime"""
        self.assertRaises(ValueError, number.getStrongPrime, 256)
        self.assertRaises(ValueError, number.getStrongPrime, 513)
        bits = 512
        x = number.getStrongPrime(bits)
        self.assertNotEqual(x % 2, 0)
        self.assertEqual(x > (1L << bits-1)-1, 1)
        self.assertEqual(x < (1L << bits), 1)
        e = 2**16+1
        x = number.getStrongPrime(bits, e)
        self.assertEqual(number.GCD(x-1, e), 1)
        self.assertNotEqual(x % 2, 0)
        self.assertEqual(x > (1L << bits-1)-1, 1)
        self.assertEqual(x < (1L << bits), 1)
        e = 2**16+2
        x = number.getStrongPrime(bits, e)
        self.assertEqual(number.GCD((x-1)>>1, e), 1)
        self.assertNotEqual(x % 2, 0)
        self.assertEqual(x > (1L << bits-1)-1, 1)
        self.assertEqual(x < (1L << bits), 1)
项目:SublimeRemoteGDB    作者:summerwinter    | 项目源码 | 文件源码
def test_getStrongPrime(self):
        """Util.number.getStrongPrime"""
        self.assertRaises(ValueError, number.getStrongPrime, 256)
        self.assertRaises(ValueError, number.getStrongPrime, 513)
        bits = 512
        x = number.getStrongPrime(bits)
        self.assertNotEqual(x % 2, 0)
        self.assertEqual(x > (1 << bits-1)-1, 1)
        self.assertEqual(x < (1 << bits), 1)
        e = 2**16+1
        x = number.getStrongPrime(bits, e)
        self.assertEqual(number.GCD(x-1, e), 1)
        self.assertNotEqual(x % 2, 0)
        self.assertEqual(x > (1 << bits-1)-1, 1)
        self.assertEqual(x < (1 << bits), 1)
        e = 2**16+2
        x = number.getStrongPrime(bits, e)
        self.assertEqual(number.GCD((x-1)>>1, e), 1)
        self.assertNotEqual(x % 2, 0)
        self.assertEqual(x > (1 << bits-1)-1, 1)
        self.assertEqual(x < (1 << bits), 1)
项目:sslstrip-hsts-openwrt    作者:adde88    | 项目源码 | 文件源码
def test_getStrongPrime(self):
        """Util.number.getStrongPrime"""
        self.assertRaises(ValueError, number.getStrongPrime, 256)
        self.assertRaises(ValueError, number.getStrongPrime, 513)
        bits = 512
        x = number.getStrongPrime(bits)
        self.assertNotEqual(x % 2, 0)
        self.assertEqual(x > (1L << bits-1)-1, 1)
        self.assertEqual(x < (1L << bits), 1)
        e = 2**16+1
        x = number.getStrongPrime(bits, e)
        self.assertEqual(number.GCD(x-1, e), 1)
        self.assertNotEqual(x % 2, 0)
        self.assertEqual(x > (1L << bits-1)-1, 1)
        self.assertEqual(x < (1L << bits), 1)
        e = 2**16+2
        x = number.getStrongPrime(bits, e)
        self.assertEqual(number.GCD((x-1)>>1, e), 1)
        self.assertNotEqual(x % 2, 0)
        self.assertEqual(x > (1L << bits-1)-1, 1)
        self.assertEqual(x < (1L << bits), 1)
项目:Encryped-file-system    作者:kittenish    | 项目源码 | 文件源码
def test_getStrongPrime(self):
        """Util.number.getStrongPrime"""
        self.assertRaises(ValueError, number.getStrongPrime, 256)
        self.assertRaises(ValueError, number.getStrongPrime, 513)
        bits = 512
        x = number.getStrongPrime(bits)
        self.assertNotEqual(x % 2, 0)
        self.assertEqual(x > (1L << bits-1)-1, 1)
        self.assertEqual(x < (1L << bits), 1)
        e = 2**16+1
        x = number.getStrongPrime(bits, e)
        self.assertEqual(number.GCD(x-1, e), 1)
        self.assertNotEqual(x % 2, 0)
        self.assertEqual(x > (1L << bits-1)-1, 1)
        self.assertEqual(x < (1L << bits), 1)
        e = 2**16+2
        x = number.getStrongPrime(bits, e)
        self.assertEqual(number.GCD((x-1)>>1, e), 1)
        self.assertNotEqual(x % 2, 0)
        self.assertEqual(x > (1L << bits-1)-1, 1)
        self.assertEqual(x < (1L << bits), 1)
项目:isf    作者:w3h    | 项目源码 | 文件源码
def test_getStrongPrime(self):
        """Util.number.getStrongPrime"""
        self.assertRaises(ValueError, number.getStrongPrime, 256)
        self.assertRaises(ValueError, number.getStrongPrime, 513)
        bits = 512
        x = number.getStrongPrime(bits)
        self.assertNotEqual(x % 2, 0)
        self.assertEqual(x > (1L << bits-1)-1, 1)
        self.assertEqual(x < (1L << bits), 1)
        e = 2**16+1
        x = number.getStrongPrime(bits, e)
        self.assertEqual(number.GCD(x-1, e), 1)
        self.assertNotEqual(x % 2, 0)
        self.assertEqual(x > (1L << bits-1)-1, 1)
        self.assertEqual(x < (1L << bits), 1)
        e = 2**16+2
        x = number.getStrongPrime(bits, e)
        self.assertEqual(number.GCD((x-1)>>1, e), 1)
        self.assertNotEqual(x % 2, 0)
        self.assertEqual(x > (1L << bits-1)-1, 1)
        self.assertEqual(x < (1L << bits), 1)
项目:kekescan    作者:xiaoxiaoleo    | 项目源码 | 文件源码
def test_getStrongPrime(self):
        """Util.number.getStrongPrime"""
        self.assertRaises(ValueError, number.getStrongPrime, 256)
        self.assertRaises(ValueError, number.getStrongPrime, 513)
        bits = 512
        x = number.getStrongPrime(bits)
        self.assertNotEqual(x % 2, 0)
        self.assertEqual(x > (1L << bits-1)-1, 1)
        self.assertEqual(x < (1L << bits), 1)
        e = 2**16+1
        x = number.getStrongPrime(bits, e)
        self.assertEqual(number.GCD(x-1, e), 1)
        self.assertNotEqual(x % 2, 0)
        self.assertEqual(x > (1L << bits-1)-1, 1)
        self.assertEqual(x < (1L << bits), 1)
        e = 2**16+2
        x = number.getStrongPrime(bits, e)
        self.assertEqual(number.GCD((x-1)>>1, e), 1)
        self.assertNotEqual(x % 2, 0)
        self.assertEqual(x > (1L << bits-1)-1, 1)
        self.assertEqual(x < (1L << bits), 1)
项目:Repobot    作者:Desgard    | 项目源码 | 文件源码
def test_getStrongPrime(self):
        """Util.number.getStrongPrime"""
        self.assertRaises(ValueError, number.getStrongPrime, 256)
        self.assertRaises(ValueError, number.getStrongPrime, 513)
        bits = 512
        x = number.getStrongPrime(bits)
        self.assertNotEqual(x % 2, 0)
        self.assertEqual(x > (1 << bits-1)-1, 1)
        self.assertEqual(x < (1 << bits), 1)
        e = 2**16+1
        x = number.getStrongPrime(bits, e)
        self.assertEqual(number.GCD(x-1, e), 1)
        self.assertNotEqual(x % 2, 0)
        self.assertEqual(x > (1 << bits-1)-1, 1)
        self.assertEqual(x < (1 << bits), 1)
        e = 2**16+2
        x = number.getStrongPrime(bits, e)
        self.assertEqual(number.GCD((x-1)>>1, e), 1)
        self.assertNotEqual(x % 2, 0)
        self.assertEqual(x > (1 << bits-1)-1, 1)
        self.assertEqual(x < (1 << bits), 1)
项目:PyQYT    作者:collinsctk    | 项目源码 | 文件源码
def test_getStrongPrime(self):
        """Util.number.getStrongPrime"""
        self.assertRaises(ValueError, number.getStrongPrime, 256)
        self.assertRaises(ValueError, number.getStrongPrime, 513)
        bits = 512
        x = number.getStrongPrime(bits)
        self.assertNotEqual(x % 2, 0)
        self.assertEqual(x > (1 << bits-1)-1, 1)
        self.assertEqual(x < (1 << bits), 1)
        e = 2**16+1
        x = number.getStrongPrime(bits, e)
        self.assertEqual(number.GCD(x-1, e), 1)
        self.assertNotEqual(x % 2, 0)
        self.assertEqual(x > (1 << bits-1)-1, 1)
        self.assertEqual(x < (1 << bits), 1)
        e = 2**16+2
        x = number.getStrongPrime(bits, e)
        self.assertEqual(number.GCD((x-1)>>1, e), 1)
        self.assertNotEqual(x % 2, 0)
        self.assertEqual(x > (1 << bits-1)-1, 1)
        self.assertEqual(x < (1 << bits), 1)
项目:PiBunny    作者:tholum    | 项目源码 | 文件源码
def _nfold(str, nbytes):
    # Convert str to a string of length nbytes using the RFC 3961 nfold
    # operation.

    # Rotate the bytes in str to the right by nbits bits.
    def rotate_right(str, nbits):
        nbytes, remain = (nbits//8) % len(str), nbits % 8
        return ''.join(chr((ord(str[i-nbytes]) >> remain) |
                           ((ord(str[i-nbytes-1]) << (8-remain)) & 0xff))
                       for i in xrange(len(str)))

    # Add equal-length strings together with end-around carry.
    def add_ones_complement(str1, str2):
        n = len(str1)
        v = [ord(a) + ord(b) for a, b in zip(str1, str2)]
        # Propagate carry bits to the left until there aren't any left.
        while any(x & ~0xff for x in v):
            v = [(v[i-n+1]>>8) + (v[i]&0xff) for i in xrange(n)]
        return ''.join(chr(x) for x in v)

    # Concatenate copies of str to produce the least common multiple
    # of len(str) and nbytes, rotating each copy of str to the right
    # by 13 bits times its list position.  Decompose the concatenation
    # into slices of length nbytes, and add them together as
    # big-endian ones' complement integers.
    slen = len(str)
    lcm = nbytes * slen / gcd(nbytes, slen)
    bigstr = ''.join((rotate_right(str, 13 * i) for i in xrange(lcm / slen)))
    slices = (bigstr[p:p+nbytes] for p in xrange(0, lcm, nbytes))
    return reduce(add_ones_complement, slices)
项目:scapy-bpf    作者:guedou    | 项目源码 | 文件源码
def gcd(a, b):
            """Fallback implementation when Crypto is missing, and fractions does
            not exist (Python 2.5)

            """
            if b > a:
                a, b = b, a
            c = a % b
            return b if c == 0 else gcd(c, b)
项目:scapy-bpf    作者:guedou    | 项目源码 | 文件源码
def _lcm(a, b):
    """
    Least Common Multiple between 2 integers.
    """
    if a == 0 or b == 0:
        return 0
    else:
        return abs(a * b) / gcd(a, b)
项目:CVE-2017-7494    作者:joxeankoret    | 项目源码 | 文件源码
def _nfold(str, nbytes):
    # Convert str to a string of length nbytes using the RFC 3961 nfold
    # operation.

    # Rotate the bytes in str to the right by nbits bits.
    def rotate_right(str, nbits):
        nbytes, remain = (nbits//8) % len(str), nbits % 8
        return ''.join(chr((ord(str[i-nbytes]) >> remain) |
                           ((ord(str[i-nbytes-1]) << (8-remain)) & 0xff))
                       for i in xrange(len(str)))

    # Add equal-length strings together with end-around carry.
    def add_ones_complement(str1, str2):
        n = len(str1)
        v = [ord(a) + ord(b) for a, b in zip(str1, str2)]
        # Propagate carry bits to the left until there aren't any left.
        while any(x & ~0xff for x in v):
            v = [(v[i-n+1]>>8) + (v[i]&0xff) for i in xrange(n)]
        return ''.join(chr(x) for x in v)

    # Concatenate copies of str to produce the least common multiple
    # of len(str) and nbytes, rotating each copy of str to the right
    # by 13 bits times its list position.  Decompose the concatenation
    # into slices of length nbytes, and add them together as
    # big-endian ones' complement integers.
    slen = len(str)
    lcm = nbytes * slen / gcd(nbytes, slen)
    bigstr = ''.join((rotate_right(str, 13 * i) for i in xrange(lcm / slen)))
    slices = (bigstr[p:p+nbytes] for p in xrange(0, lcm, nbytes))
    return reduce(add_ones_complement, slices)
项目:isf    作者:w3h    | 项目源码 | 文件源码
def _lcm(a, b):
    """
    Least Common Multiple between 2 integers.
    """
    if a == 0 or b == 0:
        return 0
    else:
        return abs(a * b) / gcd(a, b)
项目:ctf-library    作者:Hcamael    | 项目源码 | 文件源码
def decrypt(c, p, q):
    if GCD(c, p*q) != 1:
        return None
    if legendreSymbol(c, p) != 1:
        return None
    if legendreSymbol(c, q) != 1:
        return None
    return pow(c, ((p-1)*(q-1) + 4) / 8, p*q)
项目:kekescan    作者:xiaoxiaoleo    | 项目源码 | 文件源码
def _nfold(str, nbytes):
    # Convert str to a string of length nbytes using the RFC 3961 nfold
    # operation.

    # Rotate the bytes in str to the right by nbits bits.
    def rotate_right(str, nbits):
        nbytes, remain = (nbits//8) % len(str), nbits % 8
        return ''.join(chr((ord(str[i-nbytes]) >> remain) |
                           ((ord(str[i-nbytes-1]) << (8-remain)) & 0xff))
                       for i in xrange(len(str)))

    # Add equal-length strings together with end-around carry.
    def add_ones_complement(str1, str2):
        n = len(str1)
        v = [ord(a) + ord(b) for a, b in zip(str1, str2)]
        # Propagate carry bits to the left until there aren't any left.
        while any(x & ~0xff for x in v):
            v = [(v[i-n+1]>>8) + (v[i]&0xff) for i in xrange(n)]
        return ''.join(chr(x) for x in v)

    # Concatenate copies of str to produce the least common multiple
    # of len(str) and nbytes, rotating each copy of str to the right
    # by 13 bits times its list position.  Decompose the concatenation
    # into slices of length nbytes, and add them together as
    # big-endian ones' complement integers.
    slen = len(str)
    lcm = nbytes * slen / gcd(nbytes, slen)
    bigstr = ''.join((rotate_right(str, 13 * i) for i in xrange(lcm / slen)))
    slices = (bigstr[p:p+nbytes] for p in xrange(0, lcm, nbytes))
    return reduce(add_ones_complement, slices)
项目:HoneySMB    作者:r0hi7    | 项目源码 | 文件源码
def _nfold(str, nbytes):
    # Convert str to a string of length nbytes using the RFC 3961 nfold
    # operation.

    # Rotate the bytes in str to the right by nbits bits.
    def rotate_right(str, nbits):
        nbytes, remain = (nbits//8) % len(str), nbits % 8
        return ''.join(chr((ord(str[i-nbytes]) >> remain) |
                           ((ord(str[i-nbytes-1]) << (8-remain)) & 0xff))
                       for i in xrange(len(str)))

    # Add equal-length strings together with end-around carry.
    def add_ones_complement(str1, str2):
        n = len(str1)
        v = [ord(a) + ord(b) for a, b in zip(str1, str2)]
        # Propagate carry bits to the left until there aren't any left.
        while any(x & ~0xff for x in v):
            v = [(v[i-n+1]>>8) + (v[i]&0xff) for i in xrange(n)]
        return ''.join(chr(x) for x in v)

    # Concatenate copies of str to produce the least common multiple
    # of len(str) and nbytes, rotating each copy of str to the right
    # by 13 bits times its list position.  Decompose the concatenation
    # into slices of length nbytes, and add them together as
    # big-endian ones' complement integers.
    slen = len(str)
    lcm = nbytes * slen / gcd(nbytes, slen)
    bigstr = ''.join((rotate_right(str, 13 * i) for i in xrange(lcm / slen)))
    slices = (bigstr[p:p+nbytes] for p in xrange(0, lcm, nbytes))
    return reduce(add_ones_complement, slices)
项目:hostapd-mana    作者:adde88    | 项目源码 | 文件源码
def rsa_construct(n, e, d=None, p=None, q=None, u=None):
    """Construct an RSAKey object"""
    assert isinstance(n, long)
    assert isinstance(e, long)
    assert isinstance(d, (long, type(None)))
    assert isinstance(p, (long, type(None)))
    assert isinstance(q, (long, type(None)))
    assert isinstance(u, (long, type(None)))
    obj = _RSAKey()
    obj.n = n
    obj.e = e
    if d is None:
        return obj
    obj.d = d
    if p is not None and q is not None:
        obj.p = p
        obj.q = q
    else:
        # Compute factors p and q from the private exponent d.
        # We assume that n has no more than two factors.
        # See 8.2.2(i) in Handbook of Applied Cryptography.
        ktot = d*e-1
        # The quantity d*e-1 is a multiple of phi(n), even,
        # and can be represented as t*2^s.
        t = ktot
        while t%2==0:
            t=divmod(t,2)[0]
        # Cycle through all multiplicative inverses in Zn.
        # The algorithm is non-deterministic, but there is a 50% chance
        # any candidate a leads to successful factoring.
        # See "Digitalized Signatures and Public Key Functions as Intractable
        # as Factorization", M. Rabin, 1979
        spotted = 0
        a = 2
        while not spotted and a<100:
            k = t
            # Cycle through all values a^{t*2^i}=a^k
            while k<ktot:
                cand = pow(a,k,n)
                # Check if a^k is a non-trivial root of unity (mod n)
                if cand!=1 and cand!=(n-1) and pow(cand,2,n)==1:
                    # We have found a number such that (cand-1)(cand+1)=0 (mod n).
                    # Either of the terms divides n.
                    obj.p = GCD(cand+1,n)
                    spotted = 1
                    break
                k = k*2
            # This value was not any good... let's try another!
            a = a+2
        if not spotted:
            raise ValueError("Unable to compute factors p and q from exponent d.")
        # Found !
        assert ((n % obj.p)==0)
        obj.q = divmod(n,obj.p)[0]
    if u is not None:
        obj.u = u
    else:
        obj.u = inverse(obj.p, obj.q)
    return obj
项目:watchmen    作者:lycclsltt    | 项目源码 | 文件源码
def rsa_construct(n, e, d=None, p=None, q=None, u=None):
    """Construct an RSAKey object"""
    assert isinstance(n, long)
    assert isinstance(e, long)
    assert isinstance(d, (long, type(None)))
    assert isinstance(p, (long, type(None)))
    assert isinstance(q, (long, type(None)))
    assert isinstance(u, (long, type(None)))
    obj = _RSAKey()
    obj.n = n
    obj.e = e
    if d is None:
        return obj
    obj.d = d
    if p is not None and q is not None:
        obj.p = p
        obj.q = q
    else:
        # Compute factors p and q from the private exponent d.
        # We assume that n has no more than two factors.
        # See 8.2.2(i) in Handbook of Applied Cryptography.
        ktot = d*e-1
        # The quantity d*e-1 is a multiple of phi(n), even,
        # and can be represented as t*2^s.
        t = ktot
        while t%2==0:
            t=divmod(t,2)[0]
        # Cycle through all multiplicative inverses in Zn.
        # The algorithm is non-deterministic, but there is a 50% chance
        # any candidate a leads to successful factoring.
        # See "Digitalized Signatures and Public Key Functions as Intractable
        # as Factorization", M. Rabin, 1979
        spotted = 0
        a = 2
        while not spotted and a<100:
            k = t
            # Cycle through all values a^{t*2^i}=a^k
            while k<ktot:
                cand = pow(a,k,n)
                # Check if a^k is a non-trivial root of unity (mod n)
                if cand!=1 and cand!=(n-1) and pow(cand,2,n)==1:
                    # We have found a number such that (cand-1)(cand+1)=0 (mod n).
                    # Either of the terms divides n.
                    obj.p = GCD(cand+1,n)
                    spotted = 1
                    break
                k = k*2
            # This value was not any good... let's try another!
            a = a+2
        if not spotted:
            raise ValueError("Unable to compute factors p and q from exponent d.")
        # Found !
        assert ((n % obj.p)==0)
        obj.q = divmod(n,obj.p)[0]
    if u is not None:
        obj.u = u
    else:
        obj.u = inverse(obj.p, obj.q)
    return obj
项目:aws-cfn-plex    作者:lordmuffin    | 项目源码 | 文件源码
def rsa_construct(n, e, d=None, p=None, q=None, u=None):
    """Construct an RSAKey object"""
    assert isinstance(n, long)
    assert isinstance(e, long)
    assert isinstance(d, (long, type(None)))
    assert isinstance(p, (long, type(None)))
    assert isinstance(q, (long, type(None)))
    assert isinstance(u, (long, type(None)))
    obj = _RSAKey()
    obj.n = n
    obj.e = e
    if d is None:
        return obj
    obj.d = d
    if p is not None and q is not None:
        obj.p = p
        obj.q = q
    else:
        # Compute factors p and q from the private exponent d.
        # We assume that n has no more than two factors.
        # See 8.2.2(i) in Handbook of Applied Cryptography.
        ktot = d*e-1
        # The quantity d*e-1 is a multiple of phi(n), even,
        # and can be represented as t*2^s.
        t = ktot
        while t%2==0:
            t=divmod(t,2)[0]
        # Cycle through all multiplicative inverses in Zn.
        # The algorithm is non-deterministic, but there is a 50% chance
        # any candidate a leads to successful factoring.
        # See "Digitalized Signatures and Public Key Functions as Intractable
        # as Factorization", M. Rabin, 1979
        spotted = 0
        a = 2
        while not spotted and a<100:
            k = t
            # Cycle through all values a^{t*2^i}=a^k
            while k<ktot:
                cand = pow(a,k,n)
                # Check if a^k is a non-trivial root of unity (mod n)
                if cand!=1 and cand!=(n-1) and pow(cand,2,n)==1:
                    # We have found a number such that (cand-1)(cand+1)=0 (mod n).
                    # Either of the terms divides n.
                    obj.p = GCD(cand+1,n)
                    spotted = 1
                    break
                k = k*2
            # This value was not any good... let's try another!
            a = a+2
        if not spotted:
            raise ValueError("Unable to compute factors p and q from exponent d.")
        # Found !
        assert ((n % obj.p)==0)
        obj.q = divmod(n,obj.p)[0]
    if u is not None:
        obj.u = u
    else:
        obj.u = inverse(obj.p, obj.q)
    return obj
项目:git_intgrtn_aws_s3    作者:droidlabour    | 项目源码 | 文件源码
def rsa_construct(n, e, d=None, p=None, q=None, u=None):
    """Construct an RSAKey object"""
    assert isinstance(n, long)
    assert isinstance(e, long)
    assert isinstance(d, (long, type(None)))
    assert isinstance(p, (long, type(None)))
    assert isinstance(q, (long, type(None)))
    assert isinstance(u, (long, type(None)))
    obj = _RSAKey()
    obj.n = n
    obj.e = e
    if d is None:
        return obj
    obj.d = d
    if p is not None and q is not None:
        obj.p = p
        obj.q = q
    else:
        # Compute factors p and q from the private exponent d.
        # We assume that n has no more than two factors.
        # See 8.2.2(i) in Handbook of Applied Cryptography.
        ktot = d*e-1
        # The quantity d*e-1 is a multiple of phi(n), even,
        # and can be represented as t*2^s.
        t = ktot
        while t%2==0:
            t=divmod(t,2)[0]
        # Cycle through all multiplicative inverses in Zn.
        # The algorithm is non-deterministic, but there is a 50% chance
        # any candidate a leads to successful factoring.
        # See "Digitalized Signatures and Public Key Functions as Intractable
        # as Factorization", M. Rabin, 1979
        spotted = 0
        a = 2
        while not spotted and a<100:
            k = t
            # Cycle through all values a^{t*2^i}=a^k
            while k<ktot:
                cand = pow(a,k,n)
                # Check if a^k is a non-trivial root of unity (mod n)
                if cand!=1 and cand!=(n-1) and pow(cand,2,n)==1:
                    # We have found a number such that (cand-1)(cand+1)=0 (mod n).
                    # Either of the terms divides n.
                    obj.p = GCD(cand+1,n)
                    spotted = 1
                    break
                k = k*2
            # This value was not any good... let's try another!
            a = a+2
        if not spotted:
            raise ValueError("Unable to compute factors p and q from exponent d.")
        # Found !
        assert ((n % obj.p)==0)
        obj.q = divmod(n,obj.p)[0]
    if u is not None:
        obj.u = u
    else:
        obj.u = inverse(obj.p, obj.q)
    return obj
项目:MCSManager-fsmodule    作者:Suwings    | 项目源码 | 文件源码
def rsa_construct(n, e, d=None, p=None, q=None, u=None):
    """Construct an RSAKey object"""
    assert isinstance(n, long)
    assert isinstance(e, long)
    assert isinstance(d, (long, type(None)))
    assert isinstance(p, (long, type(None)))
    assert isinstance(q, (long, type(None)))
    assert isinstance(u, (long, type(None)))
    obj = _RSAKey()
    obj.n = n
    obj.e = e
    if d is None:
        return obj
    obj.d = d
    if p is not None and q is not None:
        obj.p = p
        obj.q = q
    else:
        # Compute factors p and q from the private exponent d.
        # We assume that n has no more than two factors.
        # See 8.2.2(i) in Handbook of Applied Cryptography.
        ktot = d*e-1
        # The quantity d*e-1 is a multiple of phi(n), even,
        # and can be represented as t*2^s.
        t = ktot
        while t%2==0:
            t=divmod(t,2)[0]
        # Cycle through all multiplicative inverses in Zn.
        # The algorithm is non-deterministic, but there is a 50% chance
        # any candidate a leads to successful factoring.
        # See "Digitalized Signatures and Public Key Functions as Intractable
        # as Factorization", M. Rabin, 1979
        spotted = 0
        a = 2
        while not spotted and a<100:
            k = t
            # Cycle through all values a^{t*2^i}=a^k
            while k<ktot:
                cand = pow(a,k,n)
                # Check if a^k is a non-trivial root of unity (mod n)
                if cand!=1 and cand!=(n-1) and pow(cand,2,n)==1:
                    # We have found a number such that (cand-1)(cand+1)=0 (mod n).
                    # Either of the terms divides n.
                    obj.p = GCD(cand+1,n)
                    spotted = 1
                    break
                k = k*2
            # This value was not any good... let's try another!
            a = a+2
        if not spotted:
            raise ValueError("Unable to compute factors p and q from exponent d.")
        # Found !
        assert ((n % obj.p)==0)
        obj.q = divmod(n,obj.p)[0]
    if u is not None:
        obj.u = u
    else:
        obj.u = inverse(obj.p, obj.q)
    return obj
项目:PyMal    作者:cysinfo    | 项目源码 | 文件源码
def rsa_construct(n, e, d=None, p=None, q=None, u=None):
    """Construct an RSAKey object"""
    assert isinstance(n, long)
    assert isinstance(e, long)
    assert isinstance(d, (long, type(None)))
    assert isinstance(p, (long, type(None)))
    assert isinstance(q, (long, type(None)))
    assert isinstance(u, (long, type(None)))
    obj = _RSAKey()
    obj.n = n
    obj.e = e
    if d is None:
        return obj
    obj.d = d
    if p is not None and q is not None:
        obj.p = p
        obj.q = q
    else:
        # Compute factors p and q from the private exponent d.
        # We assume that n has no more than two factors.
        # See 8.2.2(i) in Handbook of Applied Cryptography.
        ktot = d*e-1
        # The quantity d*e-1 is a multiple of phi(n), even,
        # and can be represented as t*2^s.
        t = ktot
        while t%2==0:
            t=divmod(t,2)[0]
        # Cycle through all multiplicative inverses in Zn.
        # The algorithm is non-deterministic, but there is a 50% chance
        # any candidate a leads to successful factoring.
        # See "Digitalized Signatures and Public Key Functions as Intractable
        # as Factorization", M. Rabin, 1979
        spotted = 0
        a = 2
        while not spotted and a<100:
            k = t
            # Cycle through all values a^{t*2^i}=a^k
            while k<ktot:
                cand = pow(a,k,n)
                # Check if a^k is a non-trivial root of unity (mod n)
                if cand!=1 and cand!=(n-1) and pow(cand,2,n)==1:
                    # We have found a number such that (cand-1)(cand+1)=0 (mod n).
                    # Either of the terms divides n.
                    obj.p = GCD(cand+1,n)
                    spotted = 1
                    break
                k = k*2
            # This value was not any good... let's try another!
            a = a+2
        if not spotted:
            raise ValueError("Unable to compute factors p and q from exponent d.")
        # Found !
        assert ((n % obj.p)==0)
        obj.q = divmod(n,obj.p)[0]
    if u is not None:
        obj.u = u
    else:
        obj.u = inverse(obj.p, obj.q)
    return obj
项目:SublimeRemoteGDB    作者:summerwinter    | 项目源码 | 文件源码
def rsa_construct(n, e, d=None, p=None, q=None, u=None):
    """Construct an RSAKey object"""
    assert isinstance(n, int)
    assert isinstance(e, int)
    assert isinstance(d, (int, type(None)))
    assert isinstance(p, (int, type(None)))
    assert isinstance(q, (int, type(None)))
    assert isinstance(u, (int, type(None)))
    obj = _RSAKey()
    obj.n = n
    obj.e = e
    if d is None:
        return obj
    obj.d = d
    if p is not None and q is not None:
        obj.p = p
        obj.q = q
    else:
        # Compute factors p and q from the private exponent d.
        # We assume that n has no more than two factors.
        # See 8.2.2(i) in Handbook of Applied Cryptography.
        ktot = d*e-1
        # The quantity d*e-1 is a multiple of phi(n), even,
        # and can be represented as t*2^s.
        t = ktot
        while t%2==0:
            t=divmod(t,2)[0]
        # Cycle through all multiplicative inverses in Zn.
        # The algorithm is non-deterministic, but there is a 50% chance
        # any candidate a leads to successful factoring.
        # See "Digitalized Signatures and Public Key Functions as Intractable
        # as Factorization", M. Rabin, 1979
        spotted = 0
        a = 2
        while not spotted and a<100:
            k = t
            # Cycle through all values a^{t*2^i}=a^k
            while k<ktot:
                cand = pow(a,k,n)
                # Check if a^k is a non-trivial root of unity (mod n)
                if cand!=1 and cand!=(n-1) and pow(cand,2,n)==1:
                    # We have found a number such that (cand-1)(cand+1)=0 (mod n).
                    # Either of the terms divides n.
                    obj.p = GCD(cand+1,n)
                    spotted = 1
                    break
                k = k*2
            # This value was not any good... let's try another!
            a = a+2
        if not spotted:
            raise ValueError("Unable to compute factors p and q from exponent d.")
        # Found !
        assert ((n % obj.p)==0)
        obj.q = divmod(n,obj.p)[0]
    if u is not None:
        obj.u = u
    else:
        obj.u = inverse(obj.p, obj.q)
    return obj
项目:sslstrip-hsts-openwrt    作者:adde88    | 项目源码 | 文件源码
def rsa_construct(n, e, d=None, p=None, q=None, u=None):
    """Construct an RSAKey object"""
    assert isinstance(n, long)
    assert isinstance(e, long)
    assert isinstance(d, (long, type(None)))
    assert isinstance(p, (long, type(None)))
    assert isinstance(q, (long, type(None)))
    assert isinstance(u, (long, type(None)))
    obj = _RSAKey()
    obj.n = n
    obj.e = e
    if d is None:
        return obj
    obj.d = d
    if p is not None and q is not None:
        obj.p = p
        obj.q = q
    else:
        # Compute factors p and q from the private exponent d.
        # We assume that n has no more than two factors.
        # See 8.2.2(i) in Handbook of Applied Cryptography.
        ktot = d*e-1
        # The quantity d*e-1 is a multiple of phi(n), even,
        # and can be represented as t*2^s.
        t = ktot
        while t%2==0:
            t=divmod(t,2)[0]
        # Cycle through all multiplicative inverses in Zn.
        # The algorithm is non-deterministic, but there is a 50% chance
        # any candidate a leads to successful factoring.
        # See "Digitalized Signatures and Public Key Functions as Intractable
        # as Factorization", M. Rabin, 1979
        spotted = 0
        a = 2
        while not spotted and a<100:
            k = t
            # Cycle through all values a^{t*2^i}=a^k
            while k<ktot:
                cand = pow(a,k,n)
                # Check if a^k is a non-trivial root of unity (mod n)
                if cand!=1 and cand!=(n-1) and pow(cand,2,n)==1:
                    # We have found a number such that (cand-1)(cand+1)=0 (mod n).
                    # Either of the terms divides n.
                    obj.p = GCD(cand+1,n)
                    spotted = 1
                    break
                k = k*2
            # This value was not any good... let's try another!
            a = a+2
        if not spotted:
            raise ValueError("Unable to compute factors p and q from exponent d.")
        # Found !
        assert ((n % obj.p)==0)
        obj.q = divmod(n,obj.p)[0]
    if u is not None:
        obj.u = u
    else:
        obj.u = inverse(obj.p, obj.q)
    return obj
项目:Encryped-file-system    作者:kittenish    | 项目源码 | 文件源码
def rsa_construct(n, e, d=None, p=None, q=None, u=None):
    """Construct an RSAKey object"""
    assert isinstance(n, long)
    assert isinstance(e, long)
    assert isinstance(d, (long, type(None)))
    assert isinstance(p, (long, type(None)))
    assert isinstance(q, (long, type(None)))
    assert isinstance(u, (long, type(None)))
    obj = _RSAKey()
    obj.n = n
    obj.e = e
    if d is None:
        return obj
    obj.d = d
    if p is not None and q is not None:
        obj.p = p
        obj.q = q
    else:
        # Compute factors p and q from the private exponent d.
        # We assume that n has no more than two factors.
        # See 8.2.2(i) in Handbook of Applied Cryptography.
        ktot = d*e-1
        # The quantity d*e-1 is a multiple of phi(n), even,
        # and can be represented as t*2^s.
        t = ktot
        while t%2==0:
            t=divmod(t,2)[0]
        # Cycle through all multiplicative inverses in Zn.
        # The algorithm is non-deterministic, but there is a 50% chance
        # any candidate a leads to successful factoring.
        # See "Digitalized Signatures and Public Key Functions as Intractable
        # as Factorization", M. Rabin, 1979
        spotted = 0
        a = 2
        while not spotted and a<100:
            k = t
            # Cycle through all values a^{t*2^i}=a^k
            while k<ktot:
                cand = pow(a,k,n)
                # Check if a^k is a non-trivial root of unity (mod n)
                if cand!=1 and cand!=(n-1) and pow(cand,2,n)==1:
                    # We have found a number such that (cand-1)(cand+1)=0 (mod n).
                    # Either of the terms divides n.
                    obj.p = GCD(cand+1,n)
                    spotted = 1
                    break
                k = k*2
            # This value was not any good... let's try another!
            a = a+2
        if not spotted:
            raise ValueError("Unable to compute factors p and q from exponent d.")
        # Found !
        assert ((n % obj.p)==0)
        obj.q = divmod(n,obj.p)[0]
    if u is not None:
        obj.u = u
    else:
        obj.u = inverse(obj.p, obj.q)
    return obj
项目:isf    作者:w3h    | 项目源码 | 文件源码
def rsa_construct(n, e, d=None, p=None, q=None, u=None):
    """Construct an RSAKey object"""
    assert isinstance(n, long)
    assert isinstance(e, long)
    assert isinstance(d, (long, type(None)))
    assert isinstance(p, (long, type(None)))
    assert isinstance(q, (long, type(None)))
    assert isinstance(u, (long, type(None)))
    obj = _RSAKey()
    obj.n = n
    obj.e = e
    if d is None:
        return obj
    obj.d = d
    if p is not None and q is not None:
        obj.p = p
        obj.q = q
    else:
        # Compute factors p and q from the private exponent d.
        # We assume that n has no more than two factors.
        # See 8.2.2(i) in Handbook of Applied Cryptography.
        ktot = d*e-1
        # The quantity d*e-1 is a multiple of phi(n), even,
        # and can be represented as t*2^s.
        t = ktot
        while t%2==0:
            t=divmod(t,2)[0]
        # Cycle through all multiplicative inverses in Zn.
        # The algorithm is non-deterministic, but there is a 50% chance
        # any candidate a leads to successful factoring.
        # See "Digitalized Signatures and Public Key Functions as Intractable
        # as Factorization", M. Rabin, 1979
        spotted = 0
        a = 2
        while not spotted and a<100:
            k = t
            # Cycle through all values a^{t*2^i}=a^k
            while k<ktot:
                cand = pow(a,k,n)
                # Check if a^k is a non-trivial root of unity (mod n)
                if cand!=1 and cand!=(n-1) and pow(cand,2,n)==1:
                    # We have found a number such that (cand-1)(cand+1)=0 (mod n).
                    # Either of the terms divides n.
                    obj.p = GCD(cand+1,n)
                    spotted = 1
                    break
                k = k*2
            # This value was not any good... let's try another!
            a = a+2
        if not spotted:
            raise ValueError("Unable to compute factors p and q from exponent d.")
        # Found !
        assert ((n % obj.p)==0)
        obj.q = divmod(n,obj.p)[0]
    if u is not None:
        obj.u = u
    else:
        obj.u = inverse(obj.p, obj.q)
    return obj
项目:kekescan    作者:xiaoxiaoleo    | 项目源码 | 文件源码
def rsa_construct(n, e, d=None, p=None, q=None, u=None):
    """Construct an RSAKey object"""
    assert isinstance(n, long)
    assert isinstance(e, long)
    assert isinstance(d, (long, type(None)))
    assert isinstance(p, (long, type(None)))
    assert isinstance(q, (long, type(None)))
    assert isinstance(u, (long, type(None)))
    obj = _RSAKey()
    obj.n = n
    obj.e = e
    if d is None:
        return obj
    obj.d = d
    if p is not None and q is not None:
        obj.p = p
        obj.q = q
    else:
        # Compute factors p and q from the private exponent d.
        # We assume that n has no more than two factors.
        # See 8.2.2(i) in Handbook of Applied Cryptography.
        ktot = d*e-1
        # The quantity d*e-1 is a multiple of phi(n), even,
        # and can be represented as t*2^s.
        t = ktot
        while t%2==0:
            t=divmod(t,2)[0]
        # Cycle through all multiplicative inverses in Zn.
        # The algorithm is non-deterministic, but there is a 50% chance
        # any candidate a leads to successful factoring.
        # See "Digitalized Signatures and Public Key Functions as Intractable
        # as Factorization", M. Rabin, 1979
        spotted = 0
        a = 2
        while not spotted and a<100:
            k = t
            # Cycle through all values a^{t*2^i}=a^k
            while k<ktot:
                cand = pow(a,k,n)
                # Check if a^k is a non-trivial root of unity (mod n)
                if cand!=1 and cand!=(n-1) and pow(cand,2,n)==1:
                    # We have found a number such that (cand-1)(cand+1)=0 (mod n).
                    # Either of the terms divides n.
                    obj.p = GCD(cand+1,n)
                    spotted = 1
                    break
                k = k*2
            # This value was not any good... let's try another!
            a = a+2
        if not spotted:
            raise ValueError("Unable to compute factors p and q from exponent d.")
        # Found !
        assert ((n % obj.p)==0)
        obj.q = divmod(n,obj.p)[0]
    if u is not None:
        obj.u = u
    else:
        obj.u = inverse(obj.p, obj.q)
    return obj
项目:Repobot    作者:Desgard    | 项目源码 | 文件源码
def rsa_construct(n, e, d=None, p=None, q=None, u=None):
    """Construct an RSAKey object"""
    assert isinstance(n, int)
    assert isinstance(e, int)
    assert isinstance(d, (int, type(None)))
    assert isinstance(p, (int, type(None)))
    assert isinstance(q, (int, type(None)))
    assert isinstance(u, (int, type(None)))
    obj = _RSAKey()
    obj.n = n
    obj.e = e
    if d is None:
        return obj
    obj.d = d
    if p is not None and q is not None:
        obj.p = p
        obj.q = q
    else:
        # Compute factors p and q from the private exponent d.
        # We assume that n has no more than two factors.
        # See 8.2.2(i) in Handbook of Applied Cryptography.
        ktot = d*e-1
        # The quantity d*e-1 is a multiple of phi(n), even,
        # and can be represented as t*2^s.
        t = ktot
        while t%2==0:
            t=divmod(t,2)[0]
        # Cycle through all multiplicative inverses in Zn.
        # The algorithm is non-deterministic, but there is a 50% chance
        # any candidate a leads to successful factoring.
        # See "Digitalized Signatures and Public Key Functions as Intractable
        # as Factorization", M. Rabin, 1979
        spotted = 0
        a = 2
        while not spotted and a<100:
            k = t
            # Cycle through all values a^{t*2^i}=a^k
            while k<ktot:
                cand = pow(a,k,n)
                # Check if a^k is a non-trivial root of unity (mod n)
                if cand!=1 and cand!=(n-1) and pow(cand,2,n)==1:
                    # We have found a number such that (cand-1)(cand+1)=0 (mod n).
                    # Either of the terms divides n.
                    obj.p = GCD(cand+1,n)
                    spotted = 1
                    break
                k = k*2
            # This value was not any good... let's try another!
            a = a+2
        if not spotted:
            raise ValueError("Unable to compute factors p and q from exponent d.")
        # Found !
        assert ((n % obj.p)==0)
        obj.q = divmod(n,obj.p)[0]
    if u is not None:
        obj.u = u
    else:
        obj.u = inverse(obj.p, obj.q)
    return obj
项目:PyQYT    作者:collinsctk    | 项目源码 | 文件源码
def rsa_construct(n, e, d=None, p=None, q=None, u=None):
    """Construct an RSAKey object"""
    assert isinstance(n, int)
    assert isinstance(e, int)
    assert isinstance(d, (int, type(None)))
    assert isinstance(p, (int, type(None)))
    assert isinstance(q, (int, type(None)))
    assert isinstance(u, (int, type(None)))
    obj = _RSAKey()
    obj.n = n
    obj.e = e
    if d is None:
        return obj
    obj.d = d
    if p is not None and q is not None:
        obj.p = p
        obj.q = q
    else:
        # Compute factors p and q from the private exponent d.
        # We assume that n has no more than two factors.
        # See 8.2.2(i) in Handbook of Applied Cryptography.
        ktot = d*e-1
        # The quantity d*e-1 is a multiple of phi(n), even,
        # and can be represented as t*2^s.
        t = ktot
        while t%2==0:
            t=divmod(t,2)[0]
        # Cycle through all multiplicative inverses in Zn.
        # The algorithm is non-deterministic, but there is a 50% chance
        # any candidate a leads to successful factoring.
        # See "Digitalized Signatures and Public Key Functions as Intractable
        # as Factorization", M. Rabin, 1979
        spotted = 0
        a = 2
        while not spotted and a<100:
            k = t
            # Cycle through all values a^{t*2^i}=a^k
            while k<ktot:
                cand = pow(a,k,n)
                # Check if a^k is a non-trivial root of unity (mod n)
                if cand!=1 and cand!=(n-1) and pow(cand,2,n)==1:
                    # We have found a number such that (cand-1)(cand+1)=0 (mod n).
                    # Either of the terms divides n.
                    obj.p = GCD(cand+1,n)
                    spotted = 1
                    break
                k = k*2
            # This value was not any good... let's try another!
            a = a+2
        if not spotted:
            raise ValueError("Unable to compute factors p and q from exponent d.")
        # Found !
        assert ((n % obj.p)==0)
        obj.q = divmod(n,obj.p)[0]
    if u is not None:
        obj.u = u
    else:
        obj.u = inverse(obj.p, obj.q)
    return obj