Python tensorflow 模块,nce_loss() 实例源码

我们从Python开源项目中,提取了以下10个代码示例,用于说明如何使用tensorflow.nce_loss()

项目:text_classification    作者:brightmart    | 项目源码 | 文件源码
def loss_nce(self,l2_lambda=0.0001): #0.0001-->0.001
        """calculate loss using (NCE)cross entropy here"""
        # Compute the average NCE loss for the batch.
        # tf.nce_loss automatically draws a new sample of the negative labels each
        # time we evaluate the loss.
        if self.is_training: #training
            #labels=tf.reshape(self.input_y,[-1])               #[batch_size,1]------>[batch_size,]
            labels=tf.expand_dims(self.input_y,1)                   #[batch_size,]----->[batch_size,1]
            loss = tf.reduce_mean( #inputs: A `Tensor` of shape `[batch_size, dim]`.  The forward activations of the input network.
                tf.nn.nce_loss(weights=tf.transpose(self.W_projection),#[hidden_size*2, num_classes]--->[num_classes,hidden_size*2]. nce_weights:A `Tensor` of shape `[num_classes, dim].O.K.
                               biases=self.b_projection,                 #[label_size]. nce_biases:A `Tensor` of shape `[num_classes]`.
                               labels=labels,                 #[batch_size,1]. train_labels, # A `Tensor` of type `int64` and shape `[batch_size,num_true]`. The target classes.
                               inputs=self.output_rnn_last,# [batch_size,hidden_size*2] #A `Tensor` of shape `[batch_size, dim]`.  The forward activations of the input network.
                               num_sampled=self.num_sampled,  #scalar. 100
                               num_classes=self.num_classes,partition_strategy="div"))  #scalar. 1999
        l2_losses = tf.add_n([tf.nn.l2_loss(v) for v in tf.trainable_variables() if 'bias' not in v.name]) * l2_lambda
        loss = loss + l2_losses
        return loss
项目:text_classification    作者:brightmart    | 项目源码 | 文件源码
def loss(self,l2_lambda=0.0001):
        """calculate loss using (NCE)cross entropy here"""
        # Compute the average NCE loss for the batch.
        # tf.nce_loss automatically draws a new sample of the negative labels each
        # time we evaluate the loss.
        if self.is_training:#training
            #labels=tf.reshape(self.labels,[-1])               #3.[batch_size,max_label_per_example]------>[batch_size*max_label_per_example,]
            #labels=tf.expand_dims(labels,1)                   #[batch_size*max_label_per_example,]----->[batch_size*max_label_per_example,1]
            #nce_loss: notice-->for now, if you have a variable number of target classes, you can pad them out to a constant number by either repeating them or by padding with an otherwise unused class.
            loss = tf.reduce_mean(#inputs's SHAPE should be: [batch_size, dim]
                tf.nn.nce_loss(weights=tf.transpose(self.W),  #[embed_size, label_size]--->[label_size,embed_size]. nce_weights:A `Tensor` of shape `[num_classes, dim].O.K.
                               biases=self.b,                 #[label_size]. nce_biases:A `Tensor` of shape `[num_classes]`.
                               labels=self.labels,                 #4.[batch_size,max_label_per_example]. train_labels, # A `Tensor` of type `int64` and shape `[batch_size,num_true]`. The target classes.
                               inputs=self.sentence_embeddings,#TODO [None,self.embed_size] #A `Tensor` of shape `[batch_size, dim]`.  The forward activations of the input network.
                               num_sampled=self.num_sampled,  #  scalar. 100
                               num_true=self.max_label_per_example,
                               num_classes=self.label_size,partition_strategy="div"))  #scalar. 1999
        else:#eval(/inference)
            labels_multi_hot = self.labels_l1999 #[batch_size,label_size]
            #sigmoid_cross_entropy_with_logits:Computes sigmoid cross entropy given `logits`.Measures the probability error in discrete classification tasks in which each class is independent and not mutually exclusive.  For instance, one could perform multilabel classification where a picture can contain both an elephant and a dog at the same time.
            loss = tf.nn.sigmoid_cross_entropy_with_logits(labels=labels_multi_hot,logits=self.logits) #labels:[batch_size,label_size];logits:[batch, label_size]
            loss = tf.reduce_sum(loss, axis=1)

        # add regularization result in not converge
        l2_losses = tf.add_n([tf.nn.l2_loss(v) for v in tf.trainable_variables() if 'bias' not in v.name]) * l2_lambda
        loss=loss+l2_losses
        return loss
项目:text_classification    作者:brightmart    | 项目源码 | 文件源码
def loss(self,l2_lambda=0.01): #0.0001-->0.001
        """calculate loss using (NCE)cross entropy here"""
        # Compute the average NCE loss for the batch.
        # tf.nce_loss automatically draws a new sample of the negative labels each
        # time we evaluate the loss.
        if self.is_training: #training
            labels=tf.reshape(self.labels,[-1])               #[batch_size,1]------>[batch_size,]
            labels=tf.expand_dims(labels,1)                   #[batch_size,]----->[batch_size,1]
            loss = tf.reduce_mean( #inputs: A `Tensor` of shape `[batch_size, dim]`.  The forward activations of the input network.
                tf.nn.nce_loss(weights=tf.transpose(self.W),  #[embed_size, label_size]--->[label_size,embed_size]. nce_weights:A `Tensor` of shape `[num_classes, dim].O.K.
                               biases=self.b,                 #[label_size]. nce_biases:A `Tensor` of shape `[num_classes]`.
                               labels=labels,                 #[batch_size,1]. train_labels, # A `Tensor` of type `int64` and shape `[batch_size,num_true]`. The target classes.
                               inputs=self.sentence_embeddings,# [None,self.embed_size] #A `Tensor` of shape `[batch_size, dim]`.  The forward activations of the input network.
                               num_sampled=self.num_sampled,  #scalar. 100
                               num_classes=self.label_size,partition_strategy="div"))  #scalar. 1999
        else:#eval/inference
            #logits = tf.matmul(self.sentence_embeddings, tf.transpose(self.W)) #matmul([None,self.embed_size])--->
            #logits = tf.nn.bias_add(logits, self.b)
            labels_one_hot = tf.one_hot(self.labels, self.label_size) #[batch_size]---->[batch_size,label_size]
            #sigmoid_cross_entropy_with_logits:Computes sigmoid cross entropy given `logits`.Measures the probability error in discrete classification tasks in which each class is independent and not mutually exclusive.  For instance, one could perform multilabel classification where a picture can contain both an elephant and a dog at the same time.
            loss = tf.nn.sigmoid_cross_entropy_with_logits(labels=labels_one_hot,logits=self.logits) #labels:[batch_size,label_size];logits:[batch, label_size]
            print("loss0:", loss) #shape=(?, 1999)
            loss = tf.reduce_sum(loss, axis=1)
            print("loss1:",loss)  #shape=(?,)
        l2_losses = tf.add_n([tf.nn.l2_loss(v) for v in tf.trainable_variables() if 'bias' not in v.name]) * l2_lambda
        return loss
项目:lda2vec-tf    作者:meereeum    | 项目源码 | 文件源码
def __call__(self, embed, train_labels):

        with tf.name_scope("negative_sampling"):
            # mask out skip or OOV
            # if switched on, this yields ...
            # UserWarning: Converting sparse IndexedSlices to a dense Tensor of unknown shape. This may consume a large amount of memory.

            # mask = tf.greater(train_labels, NegativeSampling.IGNORE_LABEL_MAX)
            # # mask = tf.not_equal(train_labels, NegativeSampling.IGNORE_LABEL)
            # embed = tf.boolean_mask(embed, mask)
            # train_labels = tf.expand_dims(tf.boolean_mask(train_labels, mask), -1)
            train_labels = tf.expand_dims(train_labels, -1)

            # Compute the average NCE loss for the batch.
            # tf.nce_loss automatically draws a new sample of the negative labels each
            # time we evaluate the loss.
            # By default this uses a log-uniform (Zipfian) distribution for sampling
            # and therefore assumes labels are sorted - which they are!

            sampler = (self.freqs if self.freqs is None # default to unigram
                       else tf.nn.fixed_unigram_candidate_sampler(
                               train_labels, num_true=1, num_sampled=self.sample_size,
                               unique=True, range_max=self.vocab_size,
                               #num_reserved_ids=2, # skip or OoV
                               # ^ only if not in unigrams
                               distortion=self.power, unigrams=list(self.freqs)))

            loss = tf.reduce_mean(
                    tf.nn.nce_loss(self.nce_weights, self.nce_biases,
                                   embed, # summed doc and context embedding
                                   train_labels, self.sample_size, self.vocab_size,
                                   sampled_values=sampler), # log-unigram if not specificed
                    name="nce_batch_loss")
            # TODO negative sampling versus NCE
            # TODO uniform vs. Zipf with exponent `distortion` param
            #https://www.tensorflow.org/versions/r0.12/api_docs/python/nn.html#log_uniform_candidate_sampler

        return loss
项目:deepsleepnet    作者:akaraspt    | 项目源码 | 文件源码
def __init__(
        self,
        inputs = None,
        train_labels = None,
        vocabulary_size = 80000,
        embedding_size = 200,
        num_sampled = 64,
        nce_loss_args = {},
        E_init = tf.random_uniform_initializer(minval=-1.0, maxval=1.0),
        E_init_args = {},
        nce_W_init = tf.truncated_normal_initializer(stddev=0.03),
        nce_W_init_args = {},
        nce_b_init = tf.constant_initializer(value=0.0),
        nce_b_init_args = {},
        name ='word2vec_layer',
    ):
        Layer.__init__(self, name=name)
        self.inputs = inputs
        print("  [TL] Word2vecEmbeddingInputlayer %s: (%d, %d)" % (self.name, vocabulary_size, embedding_size))
        # Look up embeddings for inputs.
        # Note: a row of 'embeddings' is the vector representation of a word.
        # for the sake of speed, it is better to slice the embedding matrix
        # instead of transfering a word id to one-hot-format vector and then
        # multiply by the embedding matrix.
        # embed is the outputs of the hidden layer (embedding layer), it is a
        # row vector with 'embedding_size' values.
        with tf.variable_scope(name) as vs:
            embeddings = tf.get_variable(name='embeddings',
                                    shape=(vocabulary_size, embedding_size),
                                    initializer=E_init,
                                    **E_init_args)
            embed = tf.nn.embedding_lookup(embeddings, self.inputs)
            # Construct the variables for the NCE loss (i.e. negative sampling)
            nce_weights = tf.get_variable(name='nce_weights',
                                    shape=(vocabulary_size, embedding_size),
                                    initializer=nce_W_init,
                                    **nce_W_init_args)
            nce_biases = tf.get_variable(name='nce_biases',
                                    shape=(vocabulary_size),
                                    initializer=nce_b_init,
                                    **nce_b_init_args)

        # Compute the average NCE loss for the batch.
        # tf.nce_loss automatically draws a new sample of the negative labels
        # each time we evaluate the loss.
        self.nce_cost = tf.reduce_mean(
            tf.nn.nce_loss(weights=nce_weights, biases=nce_biases,
                           inputs=embed, labels=train_labels,
                           num_sampled=num_sampled, num_classes=vocabulary_size,
                           **nce_loss_args))

        self.outputs = embed
        self.normalized_embeddings = tf.nn.l2_normalize(embeddings, 1)

        self.all_layers = [self.outputs]
        self.all_params = [embeddings, nce_weights, nce_biases]
        self.all_drop = {}
项目:tensorlayer-chinese    作者:shorxp    | 项目源码 | 文件源码
def __init__(
        self,
        inputs = None,
        train_labels = None,
        vocabulary_size = 80000,
        embedding_size = 200,
        num_sampled = 64,
        nce_loss_args = {},
        E_init = tf.random_uniform_initializer(minval=-1.0, maxval=1.0),
        E_init_args = {},
        nce_W_init = tf.truncated_normal_initializer(stddev=0.03),
        nce_W_init_args = {},
        nce_b_init = tf.constant_initializer(value=0.0),
        nce_b_init_args = {},
        name ='word2vec_layer',
    ):
        Layer.__init__(self, name=name)
        self.inputs = inputs
        print("  [TL] Word2vecEmbeddingInputlayer %s: (%d, %d)" % (self.name, vocabulary_size, embedding_size))
        # Look up embeddings for inputs.
        # Note: a row of 'embeddings' is the vector representation of a word.
        # for the sake of speed, it is better to slice the embedding matrix
        # instead of transfering a word id to one-hot-format vector and then
        # multiply by the embedding matrix.
        # embed is the outputs of the hidden layer (embedding layer), it is a
        # row vector with 'embedding_size' values.
        with tf.variable_scope(name) as vs:
            embeddings = tf.get_variable(name='embeddings',
                                    shape=(vocabulary_size, embedding_size),
                                    initializer=E_init,
                                    dtype=D_TYPE,
                                    **E_init_args)
            embed = tf.nn.embedding_lookup(embeddings, self.inputs)
            # Construct the variables for the NCE loss (i.e. negative sampling)
            nce_weights = tf.get_variable(name='nce_weights',
                                    shape=(vocabulary_size, embedding_size),
                                    initializer=nce_W_init,
                                    dtype=D_TYPE,
                                    **nce_W_init_args)
            nce_biases = tf.get_variable(name='nce_biases',
                                    shape=(vocabulary_size),
                                    initializer=nce_b_init,
                                    dtype=D_TYPE,
                                    **nce_b_init_args)

        # Compute the average NCE loss for the batch.
        # tf.nce_loss automatically draws a new sample of the negative labels
        # each time we evaluate the loss.
        self.nce_cost = tf.reduce_mean(
                tf.nn.nce_loss(weights=nce_weights, biases=nce_biases,
                inputs=embed, labels=train_labels,
                num_sampled=num_sampled, num_classes=vocabulary_size,
                **nce_loss_args))

        self.outputs = embed
        self.normalized_embeddings = tf.nn.l2_normalize(embeddings, 1)

        self.all_layers = [self.outputs]
        self.all_params = [embeddings, nce_weights, nce_biases]
        self.all_drop = {}
项目:dcgan    作者:zsdonghao    | 项目源码 | 文件源码
def __init__(
        self,
        inputs = None,
        train_labels = None,
        vocabulary_size = 80000,
        embedding_size = 200,
        num_sampled = 64,
        nce_loss_args = {},
        E_init = tf.random_uniform_initializer(minval=-1.0, maxval=1.0),
        E_init_args = {},
        nce_W_init = tf.truncated_normal_initializer(stddev=0.03),
        nce_W_init_args = {},
        nce_b_init = tf.constant_initializer(value=0.0),
        nce_b_init_args = {},
        name ='word2vec_layer',
    ):
        Layer.__init__(self, name=name)
        self.inputs = inputs
        print("  [TL] Word2vecEmbeddingInputlayer %s: (%d, %d)" % (self.name, vocabulary_size, embedding_size))
        # Look up embeddings for inputs.
        # Note: a row of 'embeddings' is the vector representation of a word.
        # for the sake of speed, it is better to slice the embedding matrix
        # instead of transfering a word id to one-hot-format vector and then
        # multiply by the embedding matrix.
        # embed is the outputs of the hidden layer (embedding layer), it is a
        # row vector with 'embedding_size' values.
        with tf.variable_scope(name) as vs:
            embeddings = tf.get_variable(name='embeddings',
                                    shape=(vocabulary_size, embedding_size),
                                    initializer=E_init,
                                    **E_init_args)
            embed = tf.nn.embedding_lookup(embeddings, self.inputs)
            # Construct the variables for the NCE loss (i.e. negative sampling)
            nce_weights = tf.get_variable(name='nce_weights',
                                    shape=(vocabulary_size, embedding_size),
                                    initializer=nce_W_init,
                                    **nce_W_init_args)
            nce_biases = tf.get_variable(name='nce_biases',
                                    shape=(vocabulary_size),
                                    initializer=nce_b_init,
                                    **nce_b_init_args)

        # Compute the average NCE loss for the batch.
        # tf.nce_loss automatically draws a new sample of the negative labels
        # each time we evaluate the loss.
        self.nce_cost = tf.reduce_mean(
            tf.nn.nce_loss(weights=nce_weights, biases=nce_biases,
                           inputs=embed, labels=train_labels,
                           num_sampled=num_sampled, num_classes=vocabulary_size,
                           **nce_loss_args))

        self.outputs = embed
        self.normalized_embeddings = tf.nn.l2_normalize(embeddings, 1)

        self.all_layers = [self.outputs]
        self.all_params = [embeddings, nce_weights, nce_biases]
        self.all_drop = {}
项目:Image-Captioning    作者:zsdonghao    | 项目源码 | 文件源码
def __init__(
        self,
        inputs = None,
        train_labels = None,
        vocabulary_size = 80000,
        embedding_size = 200,
        num_sampled = 64,
        nce_loss_args = {},
        E_init = tf.random_uniform_initializer(minval=-1.0, maxval=1.0),
        E_init_args = {},
        nce_W_init = tf.truncated_normal_initializer(stddev=0.03),
        nce_W_init_args = {},
        nce_b_init = tf.constant_initializer(value=0.0),
        nce_b_init_args = {},
        name ='word2vec_layer',
    ):
        Layer.__init__(self, name=name)
        self.inputs = inputs
        self.n_units = embedding_size
        print("  tensorlayer:Instantiate Word2vecEmbeddingInputlayer %s: (%d, %d)" % (self.name, vocabulary_size, embedding_size))
        # Look up embeddings for inputs.
        # Note: a row of 'embeddings' is the vector representation of a word.
        # for the sake of speed, it is better to slice the embedding matrix
        # instead of transfering a word id to one-hot-format vector and then
        # multiply by the embedding matrix.
        # embed is the outputs of the hidden layer (embedding layer), it is a
        # row vector with 'embedding_size' values.
        with tf.variable_scope(name) as vs:
            embeddings = tf.get_variable(name='embeddings',
                                    shape=(vocabulary_size, embedding_size),
                                    initializer=E_init,
                                    **E_init_args)
            embed = tf.nn.embedding_lookup(embeddings, self.inputs)
            # Construct the variables for the NCE loss (i.e. negative sampling)
            nce_weights = tf.get_variable(name='nce_weights',
                                    shape=(vocabulary_size, embedding_size),
                                    initializer=nce_W_init,
                                    **nce_W_init_args)
            nce_biases = tf.get_variable(name='nce_biases',
                                    shape=(vocabulary_size),
                                    initializer=nce_b_init,
                                    **nce_b_init_args)

        # Compute the average NCE loss for the batch.
        # tf.nce_loss automatically draws a new sample of the negative labels
        # each time we evaluate the loss.
        self.nce_cost = tf.reduce_mean(
            tf.nn.nce_loss(weights=nce_weights, biases=nce_biases,
                           inputs=embed, labels=train_labels,
                           num_sampled=num_sampled, num_classes=vocabulary_size,
                           **nce_loss_args))

        self.outputs = embed
        self.normalized_embeddings = tf.nn.l2_normalize(embeddings, 1)

        self.all_layers = [self.outputs]
        self.all_params = [embeddings, nce_weights, nce_biases]
        self.all_drop = {}
项目:Image-Captioning    作者:zsdonghao    | 项目源码 | 文件源码
def __init__(
        self,
        inputs = None,
        train_labels = None,
        vocabulary_size = 80000,
        embedding_size = 200,
        num_sampled = 64,
        nce_loss_args = {},
        E_init = tf.random_uniform_initializer(minval=-1.0, maxval=1.0),
        E_init_args = {},
        nce_W_init = tf.truncated_normal_initializer(stddev=0.03),
        nce_W_init_args = {},
        nce_b_init = tf.constant_initializer(value=0.0),
        nce_b_init_args = {},
        name ='word2vec_layer',
    ):
        Layer.__init__(self, name=name)
        self.inputs = inputs
        print("  tensorlayer:Instantiate Word2vecEmbeddingInputlayer %s: (%d, %d)" % (self.name, vocabulary_size, embedding_size))
        # Look up embeddings for inputs.
        # Note: a row of 'embeddings' is the vector representation of a word.
        # for the sake of speed, it is better to slice the embedding matrix
        # instead of transfering a word id to one-hot-format vector and then
        # multiply by the embedding matrix.
        # embed is the outputs of the hidden layer (embedding layer), it is a
        # row vector with 'embedding_size' values.
        with tf.variable_scope(name) as vs:
            embeddings = tf.get_variable(name='embeddings',
                                    shape=(vocabulary_size, embedding_size),
                                    initializer=E_init,
                                    **E_init_args)
            embed = tf.nn.embedding_lookup(embeddings, self.inputs)
            # Construct the variables for the NCE loss (i.e. negative sampling)
            nce_weights = tf.get_variable(name='nce_weights',
                                    shape=(vocabulary_size, embedding_size),
                                    initializer=nce_W_init,
                                    **nce_W_init_args)
            nce_biases = tf.get_variable(name='nce_biases',
                                    shape=(vocabulary_size),
                                    initializer=nce_b_init,
                                    **nce_b_init_args)

        # Compute the average NCE loss for the batch.
        # tf.nce_loss automatically draws a new sample of the negative labels
        # each time we evaluate the loss.
        self.nce_cost = tf.reduce_mean(
            tf.nn.nce_loss(weights=nce_weights, biases=nce_biases,
                           inputs=embed, labels=train_labels,
                           num_sampled=num_sampled, num_classes=vocabulary_size,
                           **nce_loss_args))

        self.outputs = embed
        self.normalized_embeddings = tf.nn.l2_normalize(embeddings, 1)

        self.all_layers = [self.outputs]
        self.all_params = [embeddings, nce_weights, nce_biases]
        self.all_drop = {}
项目:Image-Captioning    作者:zsdonghao    | 项目源码 | 文件源码
def __init__(
        self,
        inputs = None,
        train_labels = None,
        vocabulary_size = 80000,
        embedding_size = 200,
        num_sampled = 64,
        nce_loss_args = {},
        E_init = tf.random_uniform_initializer(minval=-1.0, maxval=1.0),
        E_init_args = {},
        nce_W_init = tf.truncated_normal_initializer(stddev=0.03),
        nce_W_init_args = {},
        nce_b_init = tf.constant_initializer(value=0.0),
        nce_b_init_args = {},
        name ='word2vec_layer',
    ):
        Layer.__init__(self, name=name)
        self.inputs = inputs
        self.n_units = embedding_size
        print("  tensorlayer:Instantiate Word2vecEmbeddingInputlayer %s: (%d, %d)" % (self.name, vocabulary_size, embedding_size))
        # Look up embeddings for inputs.
        # Note: a row of 'embeddings' is the vector representation of a word.
        # for the sake of speed, it is better to slice the embedding matrix
        # instead of transfering a word id to one-hot-format vector and then
        # multiply by the embedding matrix.
        # embed is the outputs of the hidden layer (embedding layer), it is a
        # row vector with 'embedding_size' values.
        with tf.variable_scope(name) as vs:
            embeddings = tf.get_variable(name='embeddings',
                                    shape=(vocabulary_size, embedding_size),
                                    initializer=E_init,
                                    **E_init_args)
            embed = tf.nn.embedding_lookup(embeddings, self.inputs)
            # Construct the variables for the NCE loss (i.e. negative sampling)
            nce_weights = tf.get_variable(name='nce_weights',
                                    shape=(vocabulary_size, embedding_size),
                                    initializer=nce_W_init,
                                    **nce_W_init_args)
            nce_biases = tf.get_variable(name='nce_biases',
                                    shape=(vocabulary_size),
                                    initializer=nce_b_init,
                                    **nce_b_init_args)

        # Compute the average NCE loss for the batch.
        # tf.nce_loss automatically draws a new sample of the negative labels
        # each time we evaluate the loss.
        self.nce_cost = tf.reduce_mean(
            tf.nn.nce_loss(weights=nce_weights, biases=nce_biases,
                           inputs=embed, labels=train_labels,
                           num_sampled=num_sampled, num_classes=vocabulary_size,
                           **nce_loss_args))

        self.outputs = embed
        self.normalized_embeddings = tf.nn.l2_normalize(embeddings, 1)

        self.all_layers = [self.outputs]
        self.all_params = [embeddings, nce_weights, nce_biases]
        self.all_drop = {}